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Abstract

We introduce a latent activity model for work-
place emails, positing that communication at
work is purposeful and organized by activities.
We pose the problem as probabilistic infer-
ence in graphical models that jointly capture
the interplay between latent activities and the
email contexts they govern, such as the recipi-
ents, subject and body. The model parameters
are learned using maximum likelihood estima-
tion with an expectation maximization algo-
rithm. We present three variants of the model
that incorporate the recipients, co-occurrence
of the recipients, and email body and subject.
We demonstrate the model’s effectiveness in
an email recipient recommendation task and
show that it outperforms a state-of-the-art gen-
erative model. Additionally, we show that the
activity model can be used to identify email
senders who engage in similar activities, re-
sulting in further improvements in recipient
recommendation.

1 Introduction

Activities are a prominent characteristic of a work-
place, typically governed by people’s job roles and
work responsibilities. Examples of workplace activ-
ities can include organizing a conference, purchas-
ing equipment, managing candidate interviews, etc.
Activities can be viewed as a collaborative work
practice involving a set of people each playing a
different role in the activity (Dredze et al., 2006).

Although emails are an integral part of workplace
communication, current email clients offer little sup-
port for the activity oriented use of email (Khous-
sainov and Kushmerick, 2005). Discussions can get
split across long email threads and communications
about all activities can get intermixed, making activ-
ity management difficult (Balakrishnan et al., 2010).

In this work, we model activities as latent proba-
bility distributions personalized to the email sender.
We present three variants of the activity model, in-
corporating: (1) email recipients, (2) email recip-
ient pairs which account for co-occurrence of the
email recipients, and (3) email body and subject to-
kens along with email recipient pairs. Additionally,
we experiment with lexical (bag of words), syntac-
tic (nouns and verb phrases), and semantic (things of
interest in an email) representations of the body and
subject tokens of an email. The parameters of the
generative model are learned using an expectation
maximization (EM) algorithm.

For evaluation, we formulate a real world task set-
ting for email recipient recommendation, where we
assume that all but the last recipient of an email has
been entered by the sender, and we test the effective-
ness of our activity model in recommending the last
recipient. Such a system has practical applications,
such as reminding an email sender about a poten-
tially forgotten recipient or recommending the next
recipient as the sender enters each recipient.

The main contributions of our research are:

• We introduce a latent activity model for emails



where the email contexts are governed by
workplace activities;

• We present probabilistic modeling that incor-
porates co-occurring recipients with lexical,
syntactic and semantic contexts of an email;

• We identify senders engaging in similar activ-
ities using the activity model, and show im-
provements in recipient recommendation.

2 Related Work

Prior research related to our work can be divided into
the following three major areas presented below.

2.1 Activity in Emails

Prior research has treated emails as a communica-
tion tool for workplace activities (Moran, 2005) or
a task management resource (Bellotti et al., 2003).
Kushmerick and Lau (2005) formalized e-commerce
activities as finite-state automata, where transitions
among states represent messages sent between par-
ticipants. Dredze et al. (2006) used user generated
activity labels and classified emails into activities us-
ing overlapping participants and content similarity.
Minkov et al. (2008) modeled user created folders
and TO-DO items as activities, and created a hetero-
geneous graph to perform activity-centric search.

Shen et al. (2006) predicted tasks associated with
an incoming email by leveraging email sender, re-
cipients and distinct subject words. They found
the body words to not provide additional prediction
value. Although they used similar information as we
do, they used a combination of generative and dis-
criminative models toward task classification, and
did not do recipient recommendation. Our activity
model designs are closer to the model introduced by
Dredze and Wallach (2008), who presented a Dirich-
let process mixture model combined with author and
thread information. Our designs differ as we use co-
occurring recipients in the generative process, and
use various linguistic representations of content.

2.2 Generative models for Emails

Latent Dirichlet Allocation (LDA) (Blei et al., 2003)
is a frequently used generative topic model. Assum-
ing a Dirichlet prior, LDA models learn probability
distributions of words as latent topics in a corpus.
In emails, LDA models have been used for learn-

ing summary keywords (Dredze et al., 2008), ana-
lyzing how topics change over time (Wang and Mc-
Callum, 2006), understanding entity relations (Bala-
subramanyan and Cohen, 2011), analyzing commu-
nication networks (Nguyen et al., 2013), for author-
ship attribution (Seroussi et al., 2012), and discover-
ing topics associated with authors (McCallum et al.,
2005).

Other generative models have also been used for
analyzing email communication behavior (Navaroli
et al., 2012), identifying links between an email
sender and a recipient to detect potential anoma-
lous communication (Huang and Zeng, 2006), and
resolving personal names in emails (Elsayed et
al., 2008). Representing workplace activities of
the emails with probabilistic inference in graphical
models where observed information is personalized
to the email senders is what sets our work apart
from previous research in computational models for
emails.

2.3 Email Recipient Recommendation

For recommending email recipients, interactions
among email participants and content similarity are
the signals that have been explored most. Car-
valho and Cohen (2007) leveraged content similar-
ity by creating tf-idf centroid vectors and determin-
ing k-nearest neighbors of a target email. Pal et al.
(2007) presented a discriminative author recipient
topic model that uses transfer learning. Desai and
Dash (2014) used reverse chronologically arranged
implicit groups determined from sent emails. Sofer-
shtein and Cohen (2015) created a ranking function
combining temporal and textual features.

Among the generative modeling based ap-
proaches, Pal and McCallum (2006) learned prob-
ability distributions of recipients, and words in body
and subject to predict recipients in email cc lists.
Dredze et al. (2008) evaluated the impact of sum-
mary keywords generated using LDA, for email re-
cipient prediction. More recently, Graus et al. (2014)
predicted email recipients by estimating sender and
recipient likelihood using a communication graph,
email likelihood using content words, and evaluated
performance on the Avocado email corpus. In our
work, we use latent activity distributions, and iden-
tify senders who engage in similar activities. We
compare our recipient prediction results against the



generative model of Graus et al. (2014).

3 Problem Setting and Data

3.1 Activity Modeling in Emails

Our motivation for activity modeling in email stems
from the assumption that in the workplace, people
primarily use emails as a communication tool for
their ongoing activities, and an email’s recipient list,
content, and other context are governed by a given
activity. For example, an employee attending a con-
ference may write emails to the conference organiz-
ers regarding registration or scheduling, or emails
to a hotel for booking confirmation. The commu-
nication may span multiple emails, involving many
parties, but all under the same activity.

We model the activities as a latent probabilistic
variable over the email recipients and content, per-
sonalized to the email sender. Let D be the set of all
emails in a corpus containing N emails, generated
by S = {si | 1 ≤ i ≤ SD} senders, and sent to
R = {ri | 1 ≤ i ≤ RD} recipients. Let B = {bi |
1 ≤ i ≤ BD}, and T = {ti | 1 ≤ i ≤ TD} rep-
resent the body and subject vocabulary of the emails
respectively. LetK be the number of latent activities
for each sender. We model the activities as probabil-
ity distributions over email components S,R,B and
T .

3.2 Corpus Description and Data Sets

For our experiments, we use the Avocado email cor-
pus, available from the LDC catalog.1 The corpus
contains emails from a defunct IT company referred
to as “Avocado”. For learning the activity model, we
extract emails from 7/1/2000 – 5/1/2001 to create a
training data set, and from 5/1/2001 – 6/30/2001 for
development/tuning. In this work, we did not con-
sider threaded conversations, only retained the first
email in a thread and discarded the rest.

As additional filtering steps, we only kept emails
written by the Avocado employees, allowing us to
confine the scope of the activities within the com-
pany. To control sparsity and noise, for each email,
we enforced a a minimum of two recipients, and a
maximum of ten recipients.2 In a practical system,

1https://catalog.ldc.upenn.edu/LDC2015T03
2When an email has many recipients, it is often indicative of

general announcements or system generated emails, which are

Number of Train Train + Dev
Total emails 18,593 22,283
Unique senders 120 129
Unique recipients 3,157 3,658
Unique body words 31,386 36,005
Unique subject words 6,969 7,724
Emails per sender 154.94 172.74
Emails per recipient 5.89 6.09

Table 1: Data set statistics.

we consider it reasonable that a model only acti-
vates after some history of email is sent by a user.
We therefore removed emails by the senders hav-
ing fewer than 25 emails in the training data. From
email bodies and subjects, we removed stopwords,
and words appearing fewer than 5 times or more than
100 times.3 When a recipient’s same email alias was
present multiple times, we took it only once, as well
as removed a sender’s email alias from the recipi-
ents list if it was present there. In this work, we
focused on recipients from only the “TO” field, and
did not include recipients from the “CC” or “BCC”
field. Table 1 presents statistics of the data sets.

4 Activity Models

Our key assumption in modeling the activities in
email is that different components of an email con-
tain specific types of information that can help to
characterize the activities that drive user behavior.
In our generative process of the activity model, for
an email d ∈ D, a sender s ∈ S is first gener-
ated from a multinomial distribution with probabil-
ity vector σ, then an activity a is generated from
a sender personalized multinomial distribution with
probability vector θs. Let Rd ⊆ R, Bd ⊆ B and
Td ⊆ T be the set4 of recipients, body and subject
tokens of d respectively. The generation of the email
contexts (recipients and body/subject tokens) varies
based on the specific design of each variant of our
model. In a first simplistic model, we assume that
recipient r ∈ Rd, body token b ∈ Bd and subject
token t ∈ Td for an email can be generated from
the multinomial distributions with probability vec-
tors λs,a, φs,a, and τs,a respectively, that are condi-
tioned s and a. Point estimates for σ can be directly

less directly relevant to an employee’s activities. Some emails
in the Avocado dataset have more than 500 recipients.

3A heuristic we used to remove words that are too general.
4Multiset for body and subject tokens.



calculated from a training corpus, whereas θ, λ, φ,
and τ are the unknown parameters of the model.

4.1 Model 1: Rec

In our first model Rec, we assume that the latent
activities can be learned as a probability distribution
over the recipients alone. The generative process is:

Model 1: Rec
For each email document d ∈ D

sender s ~ Multinomial(σ)
activity a ~ Multinomial(θs)
For 1 . . . |Rd|

recipient r ~ Multinomial(λs,a)

Figure 1 presents the plate diagram of the model.
The joint probability of theRecmodel is the product
of the conditional distributions:

P (s, a, r|σ, θ, λ) = P (s|σ)P (a|s, θ)
∏
r∈Rd

P (r|s, a, λ)

The probability of a sender s, an activity a given
s, and a recipient r given s and a are defined below5:

P (s = ŝ) =

SD∏
i=1

σ
I[i=ŝ]
i , s.t.

∑
i

σi = 1

P (a = â|s = ŝ) =

K∏
i=1

θ
I[i=â]
ŝ,i , s.t. ∀s

∑
i

θs,i = 1

P (r = r̂|s = ŝ, a = â) =

RD∏
i=1

λ
I[i=r̂]
ŝ,â,i ,

s.t. ∀s,a
∑
i

λs,a,i = 1

Inference: Let dn be the nth email, where dn =
{sn, Rn

d}. We apply Bayes’ rule to find the posterior
distribution over the activities Pn(a|d), which is di-
rectly proportional to the joint distribution Pn(a, d).
We can exactly compute this distribution by evaluat-
ing the joint distribution for every value of a and the
observed document dn.

Learning: Point estimates for σ can be directly
obtained from the training corpus. We estimate the

5I is an indicator variable

parameters θ and λ by maximizing the (log) proba-
bility of observing D. We write the log(D) as:

logP (D) =

N∑
n=1

∑
a

Pn(a|s,Rd) logP
n(a, s,Rd)

We use the Expectation-Maximization (EM) al-
gorithm to set the parameters. Starting with a ran-
dom initialization of the parameters (with Gaussian
noise), EM iterates between the E-step in which
Pn(a|s,Rd) is computed for each email with fixed
parameter values computed in the previous M-step,
and the M-step in which the parameters are updated
with fixed Pn(a|s,Rd) values computed in the E-
step. The parameter updates are obtained by taking
the derivative of log P (D) with respect to each pa-
rameter, and setting the resultant to 0, providing us
with the following parameter updates:

θsn,i =

∑N
n=1

∑
a P

n(a|d)I[i = a]∑N
n=1

∑
a P

n(a|d)

λsn,a,i =

∑N
n=1

∑
a P

n(a|d)
∑

r∈R I[i = r]

|Rn
d |
∑N

n=1

∑
a P

n(a|d)

We run EM until the change in logP (D) is less
than our convergence threshold 10−5.

4.2 Model 2: CoRec
Using co-occurring recipients in generative mod-
els for emails has been rarely explored in previ-
ous work. Pal and McCallum (2006) modeled co-
recipient information as a probability distribution of
recipients conditioned on the other recipients, and
noted that this information improved their email cc
prediction performance. In our CoRec model, we
model co-recipients as pairs of recipients generated
from a probability distribution conditioned on the
sender and the activity. Let L = {(ri, rj) | 1 ≤ i ≤
RD, 1 ≤ j ≤ RD} having LD pairs of recipients in
the corpus. For an email d, Ld ⊆ L is the set of re-
cipient pairs in d. The CoRec model first generates
a sender s from the probability distribution σ, then
an activity a from a distribution over latent activi-
ties θs personalized to s, and finally recipient pairs
rp ∈ Ld from a distribution over recipient pairs ωs,a

conditioned on s and a. The generative process is
summarized below:



Figure 1: Activity model plate diagrams.

Model 2: CoRec
For each email document d

sender s ~ Multinomial(σ)
activity a ~ Multinomial(θs)
For 1 . . . |Ld|

recipient pair rp ~ Multinomial(ωs,a)

The joint probability of the CoRec model is:

P (s, a, rp|σ, θ, ω) = P (s|σ)P (a|s, θ)∏
rp∈Ld

P (rp|s, a, ω)

This adds over the Rec model the probability of a
recipient pair rp given s and a, defined below:

P (rp = r̂p|s = ŝ, a = â) =

LD∏
i=1

ω
I[i=r̂p]
ŝ,â,i ,

s.t. ∀s,a
∑
i

ωs,a,i = 1

The EM algorithm is applied in the same way as
in the Rec model. During the M-step, update for θ
remains the same. The update for ω is given below:

ωsn,a,i =

∑N
n=1

∑
a P

n(a|d)
∑

rp∈L I[i = rp]

|Ln
d |
∑N

n=1

∑
a P

n(a|d)

4.3 Model 3: CoRecBT
Finally, in the CoRecBT model, we further incor-
porate body and subject of emails. The generative
process of the model is:

Model 3: CoRecBT
For each email document d

sender s ~ Multinomial(σ)
activity a ~ Multinomial(θs)
For 1 . . . |Ld|

recipient pair rp ~ Multinomial(ωs,a)
For 1 . . . |Bd|

body token b ~ Multinomial(φs,a)
For 1 . . . |Td|

subject token t ~ Multinomial(τs,a)

The joint probability of the CoRecBT model:

P (s, a, rp, b, t|σ, θ, ω, φ, τ) = P (s|σ)P (a|s, θ)∏
rp∈Ld

P (rp|s, a, ω)
∏
b∈Bd

P (b|s, a, φ)

∏
t∈Td

P (t|s, a, τ)

where the probability of a body token b and subject
token t given s and a defined as:

P (b = b̂|s = ŝ, a = â) =

B∏
i=1

φ
I[i=b̂]
ŝ,â,i

P (t = t̂|s = ŝ, a = â) =

T∏
i=1

τ
I[i=t̂]
ŝ,â,i ,

s.t. ∀s,a
∑
i

φs,a,i = 1,∀s,a
∑
i

τs,a,i = 1

During the M-step of the EM algorithm, updates
for θ and ω remain the same as the CoRec model.
The updates for φ and τ are given below:



φsn,a,i =

∑N
n=1

∑
a P

n(a|d)
∑

b∈B I[i = b]

|Bn
d |

∑N
n=1

∑
a P

n(a|d)

τsn,a,i =

∑N
n=1

∑
a P

n(a|d)
∑

t∈T I[i = t]

|Tn
d |

∑N
n=1

∑
a P

n(a|d)

4.4 Subject and Body Token Representations
Previous work in modeling email content mostly ex-
plored bag of words (e.g., (Graus et al., 2014)) or
tf-idf vectors (e.g., (Carvalho and Cohen, 2007)) as
the content representation of an email. For model-
ing activities in emails, we experiment with different
linguistic representations of the email content. They
are:

• Lexical: as the lexical representation, we use
the bag of words (BOW) from email body and
subject, after Penn Tree Bank (PTB) style tok-
enization.

• Syntactic: using heuristics on the output of a
PTB constituent parser (Quirk et al., 2012), we
identify Nouns (N) and Verb Phrases (VP) in
email body and subject.

• Semantic: we identify phrases in emails that
represent topics, concept and entities discussed
in the emails. We refer to them as Thing of In-
terest (TOI). To extract these key phrases, we
use Web search queries as a source of informa-
tion. Using queries as a dictionary of possi-
ble key phrases is useful but has limited cov-
erage since many topics/concepts are discussed
in emails but absent or not widely available in
Web search queries. Instead of using queries
directly, we use them to construct a training
set of key phrases and their content and we
train a discriminative model to identify the key
phrases. We treat each query as a key phrase
and the surrounding text from Web results as
context. We use a sample of hundreds of thou-
sands of search queries from the usage logs of
a commercial Web search engine. Only queries
tagged as English and from the United States
locale were retained to remove geographic or
linguistic variations. Queries were kept only if

they have been submitted by at least 100 dif-
ferent users in one month. For each query, the
text from the Web page that is most relevant to
the query and that contains the exact query text
is collected as the context for the query. Rel-
evance is estimated by the percentage of time
the page has received a long dwell time click
(greater than 30 seconds) for the query. If no
relevant pages exist, the query is ignored. To
generate negative examples, random n-grams
were extracted from web pages. We experi-
mented with a large number of features includ-
ing: first word of the phrase, last word of the
phrase, n-gram features (n=1 to 3), the word
right before/after the phrase, the part-of-speech
tag of the first word in the phrase, the part-of-
speech tag of the last word in the phrase, n-
gram features (n ranges from 1 to 3) over the se-
quence of part-of-speech tags representing the
phrase and the part-of-speech tags of the word
right before/after the phrase, phrase length,
how many times it appeared in the body/title,
and the relative location of the first occurrence
of the phrase in the body. We trained a logis-
tic regression classifier using these features and
the data described above. The trained classifier
is then applied to our email data to identify the
Thing of Interest (TOI) phrases.

4.5 Discussion
Full Bayesian Treatment: In the above mod-
els, we learn point estimates for the parameters
(σ, θ, ω, φ, τ ). One can take a Bayesian approach
and treat these parameters as variables (for in-
stance, with Dirichlet prior distributions), and per-
form Bayesian inference. However, exact inference
will become intractable and we would need to re-
sort to methods such as variational inference or sam-
pling. We found this extension unnecessary, as we
had a sufficient amount of training data to estimate
all parameters reliably. In addition, our approach
enabled us to learn (and perform inference in) the
model with large amounts of data with reasonable
computing time.

5 Recipient Recommendation

To evaluate the effectiveness of our activity model,
we formulate a recipient recommendation task.



Task Definition: For a test email document d
containing the list of recipients Rd, a modified list
of recipients R∗d is created by removing the last re-
cipient r∗ ∈ Rd. Given d withR∗d, the task objective
is to recommend r∗ as the next recipient for d.

5.1 Our Methods
To recommend a recipient for a test email document
dwritten by sender sd, we first create a candidate re-
cipient list by combining recipients who received an
email from sd, and recipients who co-occurred with
an observed recipient r ∈ R∗d in the training corpus.
Sender sd and any r ∈ R∗d are excluded from the
candidate list. Next, we determine the probability
distribution of the activities in d using:

P (a|d) = P (s, a, d|σ, θ, ω, φ, τ)∑
a P (s, a, d|σ, θ, ω, φ, τ)

Each candidate recipient r∗ is then ranked by a
score using two different methods defined below.
The ranked list is used as our final recommended
recipients. The two scoring methods are:

Reg Method: In the Reg method, we score using
the chain rule6:

P (r∗|d) ∝
∑
a

P (a|d)
∏
r∈Rd

P (r∗, r|s, a)

We smooth the above function using the following
linear interpolation:

P (r∗, r|a, s) = α1 × P (r∗, r|a, s) + (1− α1)×
(α2 × P (r∗, r) + (1− α2)× P (rrare))

Here, P (rrare) is the lowest probability of any re-
cipient in the training data. We calculate αi with a
sigmoid logistic function, allowing us to determine
when to rely more on the learned probabilities:

αi =
1

1 + e−k(x−x0)

For α1, x is the pointwise mutual information
(PMI) between s and r in training data, with steep-
ness parameter k = 50. For α2, x is the frequency of
r in training data, with k = .5. Sigmoid’s midpoint

6Scoring function for the Rec model uses P (r∗|s, a)

x0 is the first quartile (Q1) of the PMI and recipi-
ent frequency distributions respectively. The above
values for k have been determined from the shape of
the sigmoid curves in the training data.

Sim Method: In the Sim method, we explore
the idea that the activity model can be used to iden-
tify other senders with similar activities as sd, who
we refer to as similar senders, S∗d . To identify the
similar senders, we evaluate senders who maximize
the log likelihood of the test document d by calcu-
lating logP (s, d) for all s ∈ S, and identify the top
5 with the highest scores to add to S∗d . The observed
sender sd is not included in S∗d . We then calculate
Ps(r

∗|d) for each s ∈ S∗d using the Reg method,
along with a weight ws:

ws =
logP (s, d)∑

s∈S∗
d
logP (s, d)

The final scoring function for the Sim method is:

P (r∗|d) = αPsd(r
∗|d) + (1− α)

∑
s∈S∗

d

wsPs(r
∗|d)

Here, α is determined with the frequency of sd in
training data, using the sigmoid function with k =
0.5 and x0 as the Q1 of the frequency distribution.

5.2 Baseline Systems
As simple baseline systems to compare with our
methods, we use 1) a random recipient baseline; 2)
ranked recipients by P (r = r∗); and 3) ranked re-
cipients by P (r = r∗|s = sd), where the proba-
bilities are calculated from the training data. We
evaluate two additional generative baselines using 4)
P (r = r∗|R∗d), and 5) P (r = r∗|s = sd, R

∗
d) by

applying Bayes’ theorem, and assuming conditional
independence among r ∈ R∗d. For these methods,
we used similar interpolation smoothing as before.

We additionally implemented the generative
model presented by Graus et al. (2014) for recipient
recommendation, which for test email d uses:

P (r∗|sd, d) ∝ P (d|r∗, sd)× P (sd|r∗)× P (r∗)

Graus estimatedP (d|r∗, sd) byP (b|r∗, sd) where
b is an observed term in the email. The eval-
uation task was different from ours as they pre-
dicted all recipients of an email. In our evalua-



Method Precision@1 Precision@2 Precision@5 Precision@10 MRR
Baselines

(1) Random 0 0 0 .10 .0025
(2) P (r = r∗) 2.81 4.58 7.49 17.32 .0736
(3) P (r = r∗|s = sd) 4.47 9.72 24.18 34.69 .1455
(4) P (r = r∗|R∗

d) 17.26 25.59 39.42 53.93 .2857
(5) P (r = r∗|s = sd, R

∗
d) 16.80 25.01 42.02 56.16 .2871

Graus Methods (Graus et al., 2014)
(6) GrausB (BOW) 2.96 4.84 8.01 17.94 .0769
(7) GrausB (VP-TOI) 4.63 9.00 18.25 28.86 .1257
(8) GrausR 18.88 27.2 41.97 54.39 .3005

Activity Models (Reg Scoring)
(9) Rec 12.27 19.81 30.53 44.46 .2224

(10) CoRec 21.63 29.07 41.45 52.16 .3167
(11) CoRecBT (BOW) 19.97 27.87 40.77 52.16 .3037
(12) CoRecBT (NP-VP-TOI) 20.64 28.29 40.93 51.79 .3081
(13) CoRecBT (VP-TOI) 20.59 29.17 41.39 51.95 .3104

Activity Models (Sim Scoring)
(14) CoRecBT (NP-VP-TOI) 22.01 30.47 44.36 56.01 .3306
(15) CoRecBT (VP-TOI) 22.26 33.63 44.57 57.05 .3336

Table 2: Recipient recommendation results (BOW = bag-of-words, NP = noun phrase, VP= verb phrase, TOI = thing of interest).

Bold indicates statistical significance over all non-shaded results using t-test (p=0.05).

tion task, we recommend the last recipient, allow-
ing us to use the already observed recipients R∗d for
estimating P (d|r∗, sd). Consequently, we present
3 additional baselines adopting Graus’ method:
6) GrausB(BOW ) method uses body words, 7)
GrausB(V P − TOI) uses the verb phrases and
things of interest, and finally 8) GrausR method
uses R∗d for estimating P (d|r∗, sd). GrausR is
equivalent to how we calculate our fifth baseline,
P (r = r∗|s = sd, R

∗
d), with the only difference of

the smoothing function.

6 Experimental Results

6.1 Experimental Setup

To evaluate recipient recommendation, we create a
test data set by extracting emails from 7/1/2001 –
8/31/2001 from the Avocado data set. First we train
our activity model with the training data and de-
termine the optimum number of activities for each
method by evaluating recipient recommendation on
the development data. The number of activities per
model is shown in Table 3. We then combine train-
ing and tuning data to create a new training data
set in order to minimize the time difference between
training and test emails. From the test data, we re-
moved emails that had a sender or recipient never
appearing in the training data. Although this lim-

its the scope of the recipient recommendation evalu-
ation task, predicting a recipient for a sender who
never appeared in the training data is beyond our
current modeling scope and practical settings. The
final test set contains 1923 emails with 14.91 emails
per sender.

Model K
Rec 10
CoRec 3
CoRecBT (BOW) 20
CoRecBT (NP-VP-TOI) 7
CoRecBT (VP-TOI) 4

Table 3: No. of activities used for recipient recommendation.

With the ranked lists of recipients generated by
each method, we calculate precision@X (X= 1, 2,
5, 10), and MRR (Mean Reciprocal Rank). Preci-
sion@X is defined as percentage of emails having
the actual recipient in the top X ranked recipients.

6.2 Recipient Recommendation Results
Table 2 presents the recipient recommendation re-
sults for different methods. The first 5 rows show
that the generative baselines from row (4) and (5)
performed much better than the simple baselines
(row (1)–(3)), yielding up to .2871 MRR. Compar-
atively, the GrausB(BOW) baseline in row (6) that
uses body words, did not perform well, which is con-
sistent with the finding by Shen et al. (2006) about



Figure 2: Word clouds of activity tokens.

body words not providing additional value in their
task classification work. However, the GrausB(VP–
TOI) in row (7) shows that using body terms more
selectively has the potential for improving perfor-
mance. Comparatively, the use of observed recipi-
ents (GrausR in row (8)) substantially improved rec-
ommendation results, yielding the highest MRR,
precision@1, and precision@2 scores, while the
generative baseline in row (5) retained the highest
precision@5 and precision@10 scores.

Next, rows (9) to (13) show results for the activ-
ity models that use the Reg scoring. First, the Rec
model outperformed the simple baselines from rows
(1) to (3) as well as the GrausB methods from rows
(6) and (7), but did not perform better than the gen-
erative baselines from rows (4) and (5) or GrausR.
All the CoRec models performed better at recom-
mending a recipient at top of the ranked lists with
higher precision@1 and precision@2 scores, which
are more practically useful for recommendation pur-
poses, and also resulted in higher MRR scores.

Finally, the rows (14) and (15) show the results
with the Sim scoring, and we observe a substan-
tial improvement across the board, with verb phrase
and thing of interest as the body context yielding
our best results. This model achieved 3.31% addi-
tional improvements in MRR, and 3.38% additional
improvements in precision@1 over the best baseline
results. This demonstrates that the learned activity
model can be used to identify senders who are likely
to engage in similar activities, improving recipient
recommendation performance further.

Figure 2 shows examples of activity tokens from
the emails of a sender in our training corpus, using
word clouds. This is meant to serve as a case anal-
ysis, but it is not straightforward to interpret word
clouds. When inspecting, we found that the names

of potential customers (Nokia, Siemens, SAP) in the
first example are prominent in some of the emails
of the sender in the raw data. The recipients in
these emails form a small cluster of people who are
mainly involved in discussions around a particular
event (Mobile Business Forum) where these compa-
nies are amongst the sponsors.

The second example, from the same sender,
shows a coherent set of recipients. But in this case,
the model seemed to have conflated multiple topics
(such as the Palm VII device and support issues).
We suspect that the cause for this confusion lies in
the strong and coherent cluster of recipients which
forces divergent topics to coalesce. While the com-
bined signals of co-recipients and topic words im-
prove the overall activity model, in some of the indi-
vidual cases it leads to one signal improperly domi-
nating the other.

7 Conclusion and Future Work

We presented a latent activity model for workplace
emails where the activities are modeled as proba-
bility distributions over email recipients and other
contexts, personalized to the email sender. Our
model incorporates co-occurring recipients as part
of the generative process, and can be used to iden-
tify senders who participate in similar activities, re-
sulting in improved performance in email recipient
recommendation. Our experiments suggest that syn-
tactic and semantic knowledge such as verb phrases
and thing of interests in emails can model the activi-
ties much better than bag-of-words, as demonstrated
by the recipient recommendation results. Learning
topics and sub-activities under workplace activities
is a promising research direction which we will ex-
plore in future work.
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