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Abstract

We propose a system that determines the salience of entities within web documents.
Many recent advances in commercial search engines leverage the identification of entities
in web pages. However, for many pages, only a small subset of entities are important, or
central, to the document, which can lead to degraded relevance for entity triggered experi-
ences. We address this problem by devising a system that scores each entity on a web page
according to its centrality to the page content. We propose salience classification functions
that incorporate various cues from document content, web search logs, and a large web
graph. To cost-effectively train the models, we introduce a novel soft labeling methodology
that generates a set of annotations based on user behaviors observed in web search logs.
We evaluate several variations of our model via a large-scale empirical study conducted
over a test set, which we release publicly to the research community. We demonstrate that
our methods significantly outperform competitive baselines and the previous state of the
art, while keeping the human annotation cost to a minimum.

1. Introduction

The concept of Salience or Aboutness has been investigated in many fields of research, from
linguistics to semiotics, and from sociology to psychology. While dictionary definitions look
deceptively simple (“most noticeable or important” (OED), “state or condition of being
prominent” (Wikipedia)), the notion of salience is very hard to pin down in practice. A
number of observations around salience might be uncontroversial: (1) Salience on the one
hand and relevance or importance on the other are not the same. An entity or notion A in
a text can be highly salient, yet unimportant to the reader: maybe the reader is already
very familiar with A, or they simply do not care about anything having to do with A; (2)
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Salience is a function of the structure of a text, and indirectly a function of the intention
of the author, as opposed to a function of the reader’s intent or needs.

In the context of the Web, salience has very practical implications, for instance in
connecting people, entities, and content in a “Web of Things” paradigm (Dalvi, Kumar,
Pang, Ramakrishnan, Tomkins, Bohannon, Keerthi, & Merugu, 2009). For example, if your
friend has liked a review about a recently released movie, Bing will annotate your search
result page with your friend’s photo when you issue a query for that movie name. If you
are browsing the Baltimore Ravens page on Yahoo! Sports, content related to the team
is recommended. For an entity search, Google displays pertinent facts from its Knowledge
Graph in the sidebar, including relationships with other entities.

Not all of these links can be extracted with equal precision. Links between people and
entities can be reliably acquired through social signals such as likes or +1s (Pantel, Gamon,
Alonso, & Haas, 2012; Muralidharan, Gyongyi, & Chi, 2012). Links between people and
content can be mined from web search logs (Agichtein, Brill, & Dumais, 2006; Baeza-Yates,
2004). Whereas entity pages from popular or wrapped sites create links between entities
and content, harvesting them from arbitrary web pages has proven difficult.

One of the reasons for this difficulty is that web pages contain a large number of non-
salient entities. On average we found 66 entities per page on a random sample of crawled web
pages at a commercial search engine. Named Entity Recognition systems, such as (Finkel,
Grenager, & Manning, 2005; Cucerzan, 2007), are generally effective at identifying entities
on web pages1. However, in our samples we found that fewer than 5% of these entities
are salient to the web page. Consider, for example, how many entities may be mentioned
in a news story about the Syrian civil war, and how few of them are central to what the
story is about. Qatar may be mentioned as a location where a meeting between Syrian
opposition groups took place, and the Associated Press may be credited as the source of
the story. “Qatar” and “The Associated Press” are peripheral to the story, i.e., not salient.
In contrast, “Syria” and the name of the central opposition fighters in the story have high
salience. Without a notion of salience, many irrelevant links would be established between
entities and documents. In a social search experience such as the one presented on Bing, if
your friend has “liked” this article and you queried for The Associated Press, it would be
detrimental to the experience to present a social annotation with your friend’s “like”.

Knowing the salient entities in a web page not only enables us to focus on the relevant
edges between people and entities, it can also add edges from content to content, pivoting
on entities and enabling pivot recommendations. In addition, new experiences are made
possible such as stamping web documents with detailed entity cards for its salient entities.
One might also expect gains in traditional search by incorporating the entities as relevance
features and by improving query-independent summaries via targeted sentence selection
based on key entities.

User interactions with search engines and web content provide a unique opportunity for
modeling entity salience. By observing search usage behavior at a commercial search engine,
we can collect links between the things people search for and the documents that satisfy
their needs. We demonstrate that this signal can serve as soft supervision for learning a
salience model.

1. Performance of NER systems vary on the entity type, but high accuracy is often observed for classes
such as people, companies, and places.
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We propose scalable models for learning to rank and classify entities according to their
salience to a document. We leverage web search logs to automatically acquire soft labels
as a supervision signal for our training data. We train our models on a large number of
web pages, leveraging features from document content, page classifiers, and a web graph.
Finally we show empirical evidence, on data representing the HEAD and TAIL distributions of
the web, that our methods significantly outperform the previous state of the art on various
ranking and classification metrics. As this is the first dataset created of its kind, we release
it publicly to the research community.

The main contributions of this paper are:

• We devise a notion of entity salience and frame the problem of understanding the
aboutness of a document as determining the most salient entities in the document;

• We model the task of entity salience detection as a weakly supervised machine learned
model, generating labeled training data via usage behaviors found in web search logs;

• We present empirical evidence that our system significantly outperforms previously
established baselines; and

• We publicly release test sets consisting of URLs and their entity mentions randomly
drawn from head and tail distributions in a commercial web search engine along with
gold standard salience judgments.

2. Related Work

Understanding the meaning or aboutness of a document has received attention from both a
theoretical (Putnam, 1958; Hutchins, 1977; Bruza, Song, & Wong, 2000) and practical per-
spective. In the latter approaches, driven by application-specific demands, computational
models have decomposed aboutness and focused on detecting aspects of aboutness such
as key terms (Yih, Goodman, & Carvalho, 2006; Irmak, Brzeski, & Kraft, 2009; Paranjpe,
2009), latent semantic spaces/topics (Landauer & Dumais, 1997; Blei, Ng, & Jordan, 2003),
and summaries (Salton, Allan, & Buckley, 1993; Kupiec, Pedersen, & Chen, 1995; Hovy &
Lin, 1998). Motivated by our entity-centric web experiences outlined in Section 1, we be-
lieve that an important aspect of document aboutness is salient entities, i.e., those entities
in a document that are central to its meaning.

Most related to our work, and subject to a direct comparison throughout our paper, is
the current state of the art described in Paranjpe (Paranjpe, 2009) where the focus is on the
detection of key terms in web pages. Web search log information is used for soft labeling
of term salience that then serves as training data for a supervised salience scoring function.
Although our system also uses auto-labeling and supervised training techniques, there are
three key differences between our proposed method and theirs. First, our notion of document
aboutness is entity-centric, i.e., we consider the identification of salient entities, as opposed
to salient terms of any kind. Second, our soft labeling method is different from theirs
and we demonstrate that it outperforms it and is more robust to effects of popularity and
presentation order of URLs in the SERP. Finally, our feature set is a significant extension
of the set of features Paranjpe utilizes.

The keyword extraction task can be seen as related to entity salience, where keywords
and key phrases are a superset of salient entities in a document. Keyword extraction is often
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addressed in the context of various document understanding tasks, most often in extraction
based summarization or abstract generation (Hulth, 2003; Marcu, 1997; Hovy & Lin, 1998),
and more recently in (online) contextual advertisement or keyword appraisal (Yih et al.,
2006). Linguistic cues for keyword extraction are investigated in (Hulth, 2003), for example,
who conducts empirical tests on the informativeness of shallow syntactic cues in their key
phrase extraction system. In his seminal work, (Marcu, 1997) illustrates the importance
of discourse context in assessing term centrality in documents. Others (Hutchins, 1977;
Hjørland, 2001; Bruza et al., 2000) examined various syntactic, semantic, and discourse
properties that indicate centrality and focus (which are closely related to aboutness). This
research also explored how those insights can be applied to practical aboutness-related tasks
such as topicality classification, subject indexing, but not entity salience. Our proposed
system does not use any features based on linguistic analysis due to the running time
complexity of most analyses that would in turn make it difficult to process a large crawl of
the web, but it should be clear that it would be possible to incorporate such features in our
learning framework.

A second approach to keyword extraction is purely based on term statistics, without
recourse to more complex linguistic structure. For example, term frequency statistics and
various term weighting schemes are commonly used to score the specificity, or importance,
of a term in information retrieval (Manning, Raghavan, & Schütze, 2008, Chapter 7). The
same idea motivates the vector space model and its application in ad hoc document retrieval
(Salton & Buckley, 1988). Salton applied the vector space model to document indexing and
key phrase generation (Salton, Wong, & Yang, 1975). We build on this insight by incorpo-
rating a set of term and document frequency features in our models, but also extending it
to other signal sources such as the web graph and search logs.

We use supervised machine learning to build our models of entity salience, a method
that has been used widely for various tasks in web document processing. Machine learn-
ing offers a principled way to calibrate signals from heterogeneous sources, which is crucial
when incorporating diverse (e.g. document content, term-weighting, web graph) insights
into one system. The drawback of supervised learning is the cost of gathering “supervision”,
or annotation for training data. This is especially problematic for newer domains or novel
tasks where annotated resources have to be created from scratch. A wide variety of tactics
are employed in the literature to overcome this bottleneck, for a theoretical perspective on
these approaches see (Zhu, 2005). One well studied approach to obtain relevance-related
supervision for web document training data is the use of web search logs: the click behav-
ior that is recorded in these logs can serve as implicit user feedback and hence indicate
relevance of a document to a user. This signal has been exploited as a surrogate for rele-
vance annotation in document retrieval systems (Joachims, 2002; Joachims, Granka, Pang,
Hembrooke, & Gay, 2005; Holland, Ester, & Kießling, 2003; Radlinski & Joachims, 2005).
Recently, these implicit annotations have been used for other web document tasks beyond
retrieval. In (Xu, Yang, & Li, 2009), the authors used web search logs to provide guidance
for generative entity mining and a clustering model. Komachi and Suzuki (Komachi &
Suzuki, 2008) designed an automatic annotation scheme on the basis of a web search log for
a semantic relation extraction system. Paşca and van Durme (Paşca & Durme, 2007) use
a web search log to obtain weak supervision for their entity attribute discovery. Irmak et
al. (Irmak et al., 2009) used statistics from clicks on keywords in Yahoo! Shortcuts to train
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their machine learned model. In our system, we exploit web search logs by designing a soft
labeling function for entity salience that is based on user behavior information in the logs.
We demonstrate that this function successfully approximates entity salience and hence can
be used as a supervision signal, removing the need for manual salience annotation.

3. Scoping

In this section, we begin with a functional definition of entity salience and then describe our
document and entity landscape via a manual investigation of random web pages. We then
test the hypothesis that a state-of-the-art NER system, although insufficient for identifying
salience, can in fact be an effective candidate generator of salient entities. Finally, we
consider the question of whether or not assigning salience to entities is a trivial process.

3.1 Entity Salience

What constitutes an entity has been cause of many philosophical debates. For our purposes,
we consider something an entity if it has or reasonably could have a Wikipedia page asso-
ciated with it. This would include people, places, companies, as well as events, concepts,
and famous dates.

We consider the following working assumptions in building our entity salience ranking
system:

• Local scoping: The salience of an entity can be solely determined by how the entity
is presented within the document. In other words, entity salience can be effectively
computed from the local context, or what is available in the document itself.

• Invariable perception: Entity salience can be assessed independently from the in-
tentions or interests of its users/readers, and independently from the prior importance
of the entity as it exists outside of the document.

Entity salience is distinct from two other aspects of aboutness: entity importance and
entity relevance. The importance of an entity refers to its influence or substantiveness
outside of the scope of the document. For example, although Barack Obama is a very
important entity, he can be peripheral to some news stories. On the other hand, the
relevance of an entity is inherently subjective to the reader’s perspective and intent. For
example, in an article about an expressionist art tour featuring Munch’s The Scream, a
reader’s hometown would be perceived as much more relevant to her than to a non-resident
reader.

Although local scoping suggests that the evidence for entity salience can be derived
most effectively from the document content, it is important to note that extra-document
information such as incoming anchor links and user clickthrough data provide important
signal, and will be leveraged by our models. Also, by assuming the source of salience to be
local to a document, we limit the search space to those entities in the document.

3.2 Qualitative Study

We conducted a small manual inspection of web pages in order to get a first perspective at
the difficulty and scope of our problem. We sampled 50 documents, randomly chosen from
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a traffic-weighted sample of documents from a commercial web search index. We examined
the content of the pages in a web browser and made a list of all entities and the salient
ones.

The largest classes of documents were narrative stories, such as news and blog articles,
YouTube pages, and entity pages (e.g., company and product pages). On average, fewer
than 5% of the entities in each document were deemed salient. We observed certain cues
when identifying salient entities. Unsurprisingly, salient entities tend to be mentioned in
the title, headings, and/or first paragraph, and are frequently mentioned.

In the next subsections, we address two questions. First, we determine whether or not
an NER system can reliably generate a set of candidate entities that contains the true
salient entities on a page. Second, we discuss the complexity of determining entity salience
with respect to the cues we identified in our study.

3.2.1 NER as a Candidate Generator

By our local scoping assumption, any salient entity is contained in its document. Hence, a
system that is capable of identifying each entity in a document would serve as a candidate
generator for a salience ranking system. Below we test whether an NER system can indeed
generate true salient entities in its list of entities. In this paper, we use a proprietary
state-of-the-art NER system, trained using the perceptron algorithm (Collins, 2002).

After the annotation exercise, we ran our NER engine on the content of the web docu-
ments. We then compared for each page the set of automatically identified entities to the
human annotation to ensure that the truly salient entities are in fact mostly recognized by
the NER engine.

We found that in 91% of the documents, at least one of the salient entities is in the
candidate entity set identified by our NER tagger. For over 90% of these pages, all the
human annotated salient entities are captured by our NER engine. Therefore it is reasonable
to use the NER system as a candidate generator.

3.2.2 Is the problem trivial?

Most entities in our sampled data are not salient: on average only 4.4%. Below we address
whether simple cues for entity salience are so straightforward that a heuristic would suffice
to identify them.

We observed many cases where cues were not reliable or conflicted with each other,
making heuristic design a difficult proposition. For example, the presence of an entity in a
title string is often a good indicator for salience. However, being included in the title (or in
the first paragraph) is neither a necessary nor a sufficient condition for salience. Authors
may omit the most salient entities from titles or first paragraphs when these entities are
obvious for the audience, or when building up a story rather than cutting straight to the
point. For example, we noted a news article about Hurricane Sandy in the Local section
of the New York Times that was simply titled Cold, Dark and Damp. Based on these
observations, we believe that a machine learned model that can combine evidence from a
multitude of signals is a better approach than developing simple heuristics. In the following
section, we describe our models that leverage signal not only from the document content,
but also its domain, a web graph, and web search logs. The experimental results in this
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paper show that using multiple sources of evidence in conjunction significantly outperforms
the use of simple cues.

4. Model

We set up our learning task as a supervised learning scenario. Below we first formally define
our task, then describe methods to automatically generate labeled training data, and finally
present our learning algorithm and features.

4.1 Task Definition

Let D and E be the sets of all documents and entities on the web, respectively. Let Ed ⊂ E
be the set of entities mentioned in d ∈ D. We formally define the aboutness task as learning
the function:

σ : D×E→ R (1)

where σ(d, e) reflects the salience of e in d2.

We denote the ranking of Ed according to σ as:

RS
d = (e1, ..., e|Ed| | ei ∈ Ed, σ(d, ei) ≥ σ(d, ei+1))

where pairs of entities with tied scores are ordered randomly. We define the ranking function

Rσ : D×E→ N (2)

such that Rσ(d, e) equals the rank of e in RS
d

3.

4.2 Soft Labeling

Manually labeled salience judgment data is hard to obtain in sufficient quantity to train a
model for diverse web sites in the head and tail distributions of URLs. Instead of manually
labeled data we rely on a soft labeling approach that uses behavioral signals from web users
as a proxy for salience annotation. Mining a web search log from a commercial search
engine, we can observe how users query for entities and which URLs they subsequently
click on. Individual clicks indicate a user’s interest in a URL based on their entity query,
i.e., they indicate the relevance of the entity in the URL to the user. In aggregate, the
combined interests for an entity/URL pair will correlate with the entity being salient, since
users are less likely to search for an entity and then examine a page that is not about that
entity. This “soft label” is available for pages that receive enough traffic to derive reliable
user click statistics. In other words, we obtain this signal predominantly for queries and
URLs in the head of the distribution. However, while this is true for the supervision signal,
the learned model uses features that are independent of user behavior, and hence it can
generalize to the tail of the distribution.

2. We fix σ(d, e) = 0 for all e /∈ Ed.
3. Rσ(d, e) is not defined for e /∈ Ed.
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4.2.1 Click Attractivity

A simple click measure is Clickthrough Rate (CTR), i.e. the rate at which users click on
a URL given a query. Paranjpe (Paranjpe, 2009) points out, however, that CTR is very
much biased towards the top-ranked result on the SERP which tends to receive the bulk
of user clicks. Instead, they propose to use Click Attractivity (CA) as a search log based
metric that correlates with salience. CA for a term t and document d is defined as:

CA(t, d) =
clicks(t, d)

clicks(t, d) + skips(t, d)
(3)

where clicks(t, d) is the number of times users clicked on d for a query containing t, and
skips(t, d) is the number of times users clicked on another document d′ that is ranked at a
lower position than d, where d is in the top-5 results. Both clicks and skips are aggregated
over all queries that contain t and lead to at least 32 instances where document d is displayed
in the search result page (SERP). In its original setting, CA was used for any term t in a
document. For this paper, only terms that are entities are considered, i.e., t = e.

Upon closer inspection, CA has its own problems, however. It is based on the assumption
that when a user looks for entity e, the URL she clicks on is the one that is most about e
compared to the other URLs in the SERP. That assumption does not hold (especially for
the low salience signal) in several common circumstances:

1. Recency trumps salience: Assume that entity e is involved in some recent gossip news.
The user will be most interested in the latest gossip about e (which provides a good
signal for salience) but will hardly ever click on the IMDB or Wikipedia page for e,
although on these pages e is very salient.

2. Popularity trumps salience: Within a set of URLs that are equally about e, some of
the sites might be more popular than others (e.g., a celebrity home page will be more
popular than a page about her maintained by a fan.) This will distort the CA score.

3. Although the claim that CTR is subject to position bias is true, we argue that CA
is similarly affected. If the user is generally more likely to click on a URL in the top
position, this also means that she is less likely to skip that top position and hence
that CA is also influenced by position bias.

In summary, we believe that CA is influenced by many factors that are not related to
salience.

4.2.2 Entity Query Ratio

To circumvent the pitfalls associated with both CTR and CA, we propose a different soft
labeling function that sidesteps the issues of position bias, popularity and recency by ag-
gregating over only the queries that lead to clicks on a URL without taking the number of
views (CTR) or the number of skips (CA) into account. This function is based on the simple
assumption that a page that is about entity e will get most of its clicks from queries about
entity e. We define Entity Query Ratio (EQR) for entity e and document d by looking at
all queries that lead to a click on d. Within that set of queries, we calculate the ratio of the
number of clicks from queries containing e to the number of clicks from all queries. The
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notion of a query containing an entity e can be defined in two ways. The more restrictive
notion is that the query and the entity are an exact match, and the softer notion is that the
query contains the entity, but may also contain other words. We experimented with both
but found that the exact match method consistently performs best for soft labeling, so we
hereon restrict our discussion to the latter. The formal definition of EQR is:

EQR(e, d) =
clicks(e, d)∑
q∈Q clicks(q, d)

(4)

where Q is the set of all queries and clicks(e, d) is redefined as the number of times users
clicked on d for a query matching e.

4.3 Learning Algorithm

Both CA and EQR soft labels produce a continuous score between 0 and 1. There are at
least three different possibilities for modeling the prediction of the score. The most natural
solution for prediction of a continuous salience score is regression, i.e., a model that tries to
fit a curve of predicted salience scores to the curve of observed (via soft label) salience. The
modeling can also be cast as a ranking problem where the model’s task is to rank the top
n most salient entities in a page in the correct order. Finally, one could map the regression
task into a binary classification task where each entity above a soft label threshold τ is
considered salient and otherwise non-salient. This approach faces a number of difficulties,
however: the best τ needs to be determined and forcing a binary decision on a continuous
label is typically not very successful compared to a regression approach. We confirmed this
suspicion with several classification experiments and for the remainder of the paper we will
only consider regression and ranking as appropriate learning tasks.

For both ranking and regression, we utilize boosted decision trees (Friedman, 1999) as
our learning algorithm system. This algorithm has a number of advantages: it has been
widely used and yields high accuracy; it does not require feature normalization; it can handle
a mix of real-valued and binary features; and it can capture non-linearities between features.
The hyperparameters are the number of iterations, learning rate, minimum instances in leaf
nodes, and the number of leaves. The particular settings for our experiments are described
in Section 6.1.

4.4 Features

We represent each entity/document pair 〈e, d〉 as a vector of features, listed in full in Table 1.
At the highest level, there are three distinct classes of features: (1) those that are computed
from properties of e and the whole document collection D, labeled Fe,D; (2) those that are
solely computed from properties of d, labeled Fd; and (3) those that are computed from
properties of e in d, labeled Fe,d. Document features, Fd, further sub-divide into categorical
features representing the page classification of d, features of the document URL, and length
features. Entity/document features, Fe,d, are subcategorized into structural features that
relate e to the structure of d, web graph features that indicate the frequency of e in inlinks
and outlinks, position features that capture the location of e in d, and finally features that
capture the frequency of e in 17 different page segments that are automatically identified
based on visual properties (see (Cai, Yu, Wen, & Ma, 2003) for more details and (Song,
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Class Family Description

Fe,D
Corpus
features

tf, df, idf, tf.idf of e in D
same in D2 where D2 contains the
documents in the top domain of d

Fd

Page
classification

page category of d
junk page score of d
inlink spam page score
spam page confidence

Url
top level domain
Url depth

Length
length of d
length of main content of d

Fe,d

Structural

e is in the title
e is in a meta key word
e is in the visual title
e is in bold font
e is in emphasized font
e is in italics
norm freq of e in table headers
norm freq of e in table body
norm freq of e in list body
norm freq of e in text
norm freq of e in title
norm freq of e in meta key words
norm freq of e in visual title
norm freq of e in bold font
norm freq of e in emphasized font
norm freq of e in italics
e is part of Url
e is in domain part of Url
e is in last part of Url

Web graph
norm freq of e in out anchors
norm freq of e in in anchors

Position

first offset of e
last offset of e
mean offset of e
standard deviation of offset of e
first offset of e in main content
last offset of e in main content
mean offset of e in main content
standard deviation of offset of e in
main content

Page
segmentation

norm freq of e in several different
page segments

Table 1: All features, classified according to class and family, used to train our salience
models. Boldface features are new compared to Paranjpe (Paranjpe, 2009).
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Liu, Wen, & Ma, 2004) for other work that used visual blocks as input). Boldface features
in Table 1 indicate additions to the feature set used in (Paranjpe, 2009). The total number
of resulting features is 7,544, consisting of 59 numeric features and 7,485 binary features
representing all observed values of the categorical features.

5. Evaluation Methodology

In this section, we describe how we construct our test datasets and the metrics that we use
for analyzing the performance of a salience function σ.

5.1 Test Set Construction

Let ρ be a graded relevance scoring function for a document d and entity e:

ρ : D×E→ {MS,LS,NS} (5)

where for ρ(d, e):

• Most Salient (MS) indicates that d is mostly about e, or e plays a prominent role
in the content of d;

• Less Salient (LS) indicates that e plays an important role in some parts of the
content of d; and

• Not Salient (NS) indicates that d is not about e.

We define a test set T = {ρ,∆} where ∆ = {(d,Ed) : d ∈ D,Ed ⊂ E} as a collection
of pairs of web pages and entities for which we have a gold standard ρ.

We start by constructing a universe of web pages by mining all the shared URLs on
the full firehose of Twitter.com during May 2012. We discarded any URL that redirected
to a query on a search engine. Second, we removed all links to YouTube.com since we
observed during our study in Section 3.2 that the salient entities here are most often trivial
to identify using a simple heuristic over the DOM tree. Finally, we removed any URL that
did not receive at least three clicks on a commercial search engine during a six month period
overlapping with our Twitter data. The final set consists of over half a million URLs, for
which we have access to a full crawl of the content.

From this set of web pages, we produce 2414 manually annotated test cases for our
experiments, spanning two test sets outlined below. Each test set consists of randomly
sampled web pages such that each page contains fifty or fewer entities to facilitate manual
annotation. The first set, labeled HEAD, consists of a traffic-weighted random sample of
web pages from our universe of URLs, where the traffic weights are estimated using the
number of clicks each URL received during a six month period. This set represents the
head distribution of our URLs. The second test set, labeled TAIL, consists of a uniform
random sample of web pages from our universe of URLs. This set represents the long tail
of the web.

For each web page in our test sets, we built the set of entity mentions by running the
Named Entity Recognizer, described in Section 3.2.1, on the content of each page. There
are 1228 candidate entities in the HEAD set and 1186 in the TAIL set.
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φbin(d, e) =

{
1 if ρ(d, e) = MS
0 otherwise

φtri(d, e) =

 1 if ρ(d, e) = MS
0.5 if ρ(d, e) = LS
0 if ρ(d, e) = NS

Table 2: Numeric conversion functions φ of graded relevance scores ρ.

To complete HEAD and TAIL, we construct gold standard relevance assessments, ρ, for
each entity-document pair. We used a crowdsourcing tool to collect relevance judgments
(MS, LS, or NS, see Section 5.1) from non-expert paid judges. For each entity-document
pair, we requested five judgments. We removed all judgments from bad judges, which were
identified as those whose mean judgment score was further than two standard deviations
from the mean of all judges. This resulted in the removal of four judges for HEAD and seven
for TAIL. The task had fair agreement for both test sets, with a Fleiss’ κ score of 0.29 on
HEAD and 0.25 on TAIL. Three expert judges then adjudicated the majority vote for each
entity-document pair.

The HEAD and TAIL test sets along with their gold standard annotations are available at
http://research.microsoft.com/research/downloads/details/5a2ddfde-83f7-4962-9ad7-d80c
d5098f38/details.aspx.

5.2 Performance Metrics

To assess the quality of a salience function σ on a test set T, we compute the aggregate
performance against the salience judgements given by the human judges. We consider two
types of applications. First, rank-sensitive applications, such as those deriving relevance
features for a search ranking function, require the top-K most salient entities. For these,
classic IR metrics such as nDCG (normalized discounted cumulative gain) and MAP
(mean average precision) are applicable (Manning et al., 2008). Second, in class-sensitive
applications, such as highlighting the salient entities on a document, we require all the
salient entities on the page. For this class of applications, Precision, Recall, and F1
metrics are applicable.

Below we define nDCG and MAP with respect to a system σ, its corresponding ranking
function Rσ (Eq. 2), and test set T.

nDCGT(σ) =
1

| T |
×

∑
(d,Rσ

d)∈T

∑|Rσ
d|

r=1
2φtri(d,er)−1

log2(r+1)

IDCG(d,Ed)

where φtri(d, er) maps the relevance score of er in d to a real-valued score according to
Table 2, and IDCG(d,Ed) is the ideal DCG if Ed was perfectly ranked.

MAPT(σ) =
1

| T |
×

∑
(d,Rσ

d)∈T

∑|Rσ
d|

r=1 φbin(d, er)Prec(R
σ
d[1, r], d)∑|Rσ

d|
r=1 φbin(d, er)

where Rσ
d[1, r] = {e1, ..., er|ei ∈ Rσd}, φbin(d, er) indicates if the entity at rank r is salient

or not in d (see Table 2), and:
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HEAD
nDCG@1 nDCG@5 MAP@1 MAP@5 F1

CAbase 0.49 0.54 0.28 0.33 0.55
EQRbase 0.51 0.54 0.20 0.28 0.55

CA TFIDF 0.66 0.73 0.38 0.46 0.63
CA PJP 0.70 0.80 0.42 0.51 0.66
CA ALL 0.80† 0.85† 0.52† 0.57† 0.70
CA ALL RANK 0.80† 0.85‡ 0.52† 0.57 0.70

EQR TFIDF 0.60 0.71 0.32 0.43 0.59
EQR PJP 0.82‡ 0.81 0.54‡ 0.56† 0.69
EQR ALL 0.82‡ 0.85† 0.54‡ 0.58† 0.75†

EQR ALL RANK 0.80† 0.84† 0.52† 0.58† 0.75†

TAIL
nDCG@1 nDCG@5 MAP@1 MAP@5 F1

CAbase 0.43 0.46 0.27 0.32 0.42
EQRbase 0.43 0.46 0.12 0.27 0.42

CA TFIDF 0.54 0.57 0.29 0.38 0.48
CA PJP 0.60 0.65 0.35† 0.47 0.55
CA ALL 0.65† 0.76‡ 0.40† 0.54† 0.61†

CA ALL RANK 0.73‡ 0.72† 0.48† 0.54† 0.59†

EQR TFIDF 0.56 0.58 0.31 0.40 0.49
EQR PJP 0.65† 0.66† 0.40 0.46 0.56
EQR ALL 0.73‡ 0.77‡ 0.48‡ 0.58‡ 0.64‡

EQR ALL RANK 0.77‡ 0.74† 0.52‡ 0.56† 0.59†

Table 3: Results on HEAD and TAIL using rank-sensitive metrics (nDCG and MAP) and
classification-sensitive metric F1. † indicates statistical significance over the soft
labeling baselines and the tf.idf feature configuration; ‡ further indicates statis-
tical significance over CA PJP (significance assessed using Student’s t-Test with
p-value = 0.1). Bold indicates the highest achieved score on each metric.

Prec(R, d) =

∑|R|
r=1 φbin(d, er)

| R |
Recall and F1 follow trivially.

6. Experimental Results

6.1 Experimental Setup

We construct two training sets, one using the Click Attractivity (CA) method from Sec-
tion 4.2.1, and the other using our Entity Query Ratio (EQR) method from Section 4.2.2.
We first ran our NER system on the content in our Web Page Data, discarding those pages
in our HEAD and TAIL test sets, and associated all queries from the US English market of a
search engine that led to a click on the pages during a six month period. We computed the
CA and EQR scores for each entity. Many entity-URL pairs receive a zero score because no
query mentioning the entity leads to any click on the URL. Although such an entity-URL
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pair could in fact be salient (even with six months of web search log data, there is sparsity
in the tail), in most cases the pair is non-salient. In our experiments, we tried configurations
that included all zero-scoring entity-URL pairs, none of them, and balancing the number
of zero-scoring pairs to be equal to the number of non-zero-scoring pairs via random sam-
pling. The balanced configurations consistently and by a large margin outperformed the
others, and hereon we consider only balanced configurations. For the EQR soft label, our
final training set contains 66,055 entity-URL pairs; for the CA soft label the number of
entity-URL pairs in the training set is 48,7594.

To complete the training sets, for each soft-labeled entity-URL pair, we computed the
features listed in Table 1. We used a commercial search engine to compute features that
require web graph data or page classification. To set the hyperparameters of our regression
and ranking models from Section 4.3, we perform a sweep of 144 combinations of parameter
settings on a three-fold cross validation, for each system configuration.

Each system that we train and evaluate consists of three choices: soft labeling method
(CA vs. EQR), feature set (selected from those listed in Table 1), and model type (regression
and ranking).

We consider the following five baselines against which to test our systems:

• CAbase and EQRbase: The systems that use the CA and EQR soft labels as their
prediction (without a learned model);

• CA TFIDF and EQR TFIDF: Regression models using only the tf, df, tf.idf
features.

• CA PJP: Current state-of-the-art model (Paranjpe, 2009).

We report our results on the following system configurations:

• EQR PJP: Regression model with the feature set from (Paranjpe, 2009) with our
soft labeling function.

• CA ALL and EQR ALL: Regression models with all features from Table 1.

• CA ALL RANK and EQR ALL RANK: Ranking models with all features.

6.2 System Comparison

Table 3 lists the performance of our baseline and system configurations on both the HEAD

and TAIL datasets. We report nDCG and MAP scores (at 1 and 5) and F1. EQR ALL
and EQR ALL RANK, our best configurations, significantly outperform the soft labeling
baselines, on both HEAD and TAIL, by 37% and 51% on F1, respectively. On TAIL, we
improve on the previous state of the art, CA PJP, significantly on all metrics, by 16% on
F1. On HEAD, we show significant improvement over CA PJP in the first position on both
nDCG and MAP.

In general, the HEAD is “easier” than the TAIL in the sense that absolute metrics are
higher, and that the choice of feature sets and soft labeling function matters less. This is
not surprising for two reasons: (1) the soft label signal is reliable only in the head because

4. This discrepancy in number of training cases is due to the fact that we only compute the CA label for
documents in the top 5 displayed search results, to keep the CA signal sufficiently reliable.
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Figure 1: Comparison of precision vs. recall curves for: HEAD (a and b) and TAIL (c and d);
and CA (a and c) and EQR (b and d) soft-labeling techniques. ALL outperforms
PJP on all configurations and EQR soft-labeling outperforms CA on all config-
urations. BEST indicates our best configuration consisting of EQR soft labeling
and ALL features.

it is extremely sparse in the tail; and (2) the head is represented dominantly in the training
data. As (Paranjpe, 2009) points out, the strategy behind learning a salience model from
a soft label is to learn from the cases where we have a good supervision signal and to
generalize to the cases in the tail. Given this argument, our expectation was to see gains
mostly in the tail for our proposed soft labeling function and feature set EQR ALL. The
positive gains on the HEAD were unexpected.

The results indicate that the choice of the soft labeling function is important. On TAIL,
the trend is that EQR outperforms CA overall as a training signal. On HEAD, the soft
labeling technique matters less; using our full feature set, both techniques yield similar
performance except on F1 where EQR outweighs CA.

As discussed in Section 5.2, we consider both rank-sensitive applications and class-
sensitive applications. As such we also test rank model configurations trained explicitly to
optimize nDCG. Using our rank models, we observe par performance against the regression
models on HEAD. On TAIL, the rank models outperform regression in the first position on
nDCG and MAP.

Figure 1 shows the precision/recall characteristics on HEAD and TAIL, with CA and EQR
soft labeling techniques combined with three different feature sets. The TFIDF features un-
derperform compared to the other feature sets in all settings. The PJP feature set improves
precision/recall in all cases against TFIDF, but in a more pronounced fashion when used
with the EQR soft labels. The best precision/recall curves are obtained from EQR ALL.
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The dotted lines in (a) and (c) superimpose the best system curve (EQR ALL) on the CA
results, highlighting the observation that the best system produces precision/recall gains
especially in the region where precision is greater than 0.7. At recall ∼ 0.6 the precision
gain on HEAD is nearly 7.5 points, on tail it is nearly 10 points at ∼ 0.5 recall.

6.3 Contribution of Feature Families

6.3.1 Feature Weights

Examination of the feature weights in EQR ALL reveals that the strongest salience cues
are the position and the frequency of the entity in the document and anchor text. In the
model, 174 features receive non-zero weights. The top five features are: the frequency of e
in the anchor text, document and title, and the df of e and offset of e in the document. The
next series of 37 features in order of feature weight is a mix of page classification, position,
URL, structural and page segmentation features with no discernible prominence of any of
these families. The binary features representing top level domains and page categories occur
in the lower weight area of the feature list, with the exception of the binary feature indicating
that the top level domain is Wikipedia - this feature ranks 11th which is not surprising given
the frequency and highly specific structure of this domain. Domains and page categories in
the medium range of feature weights include: Amazon.com, News category, Arts category,
Recreation/Outdoors category, Computers category etc.

6.3.2 Feature Ablation

Table 4 lists the results of a feature ablation study relative to our best model, EQR ALL.
Many features in EQR ALL require either a sizeable web crawl or components that are
typically part of a commercial search engine, such as page classifiers and page segmentation
models. The first block in the table, EQR DOC, addresses the question how well our
salience model would perform without access to any features that rely on this information.
This configuration would be relevant for a system that is trained outside of a search engine.
Note, though, that the soft label is also unavailable without access to a web search log, so
such a system would either have to rely on manually labeled data for training or design
a new soft labeling function. On HEAD, the difference is minimal and not statistically
significant, except for F1 where EQR ALL outperforms EQR DOC. In TAIL, however,
the EQR ALL achieves better results, with significant gains in nDCG@1 and nDCG@5.

The second block in Table 4 compares EQR ALL with models trained with the in-
dividual feature families listed in Table 1. We omit the feature families that do not take
into account the entity. These features are useful in conjunction with others, however they
do not make sense to test separately since they will have identical output for all entities
in a document. Few of the results are statistically significant, but we observe the follow-
ing trends. On HEAD, the Position family fared best on all metrics except F1. On TAIL,
Position and Structural families scored the highest.
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HEAD
nDCG@1 nDCG@5 MAP@1 MAP@5 F1

EQR ALL 0.82 0.85 0.54 0.58 0.75

EQR DOC 0.82 0.84 0.54 0.59 0.69†

EQR Corpus 0.62† 0.74† 0.34† 0.44† 0.61†

EQR Structural 0.72† 0.75† 0.42 0.50 0.66†

EQR WebGraph 0.74 0.79 0.46 0.52 0.70
EQR Position 0.78 0.82 0.48 0.53 0.69
EQR PageSeg 0.74 0.80 0.46 0.50 0.64†

TAIL
nDCG@1 nDCG@5 MAP@1 MAP@5 F1

EQR ALL 0.73 0.77 0.48 0.58 0.64

EQR DOC 0.68† 0.68† 0.42 0.50 0.58

EQR Corpus 0.58† 0.63† 0.33† 0.44† 0.51†

EQR Structural 0.75 0.65† 0.50 0.53 0.58
EQR WebGraph 0.65† 0.59† 0.38† 0.46† 0.54†

EQR Position 0.73 0.69 0.46 0.52 0.60
EQR PageSeg 0.70 0.67† 0.44 0.48 0.54†

Table 4: Feature ablation experiments on HEAD and TAIL against our best performing model
EQR ALL. The first comparison block consists of only features that are not ac-
cessible to a typical commercial search engine, EQR DOC. The second block
corresponds to each of the feature families listed in Table 1 that involve the en-
tity. † indicates statistical significance under the EQR ALL configuration using
Student’s t-Test with p-value = 0.1.

6.4 Error Analysis

6.4.1 Soft Labeling Errors

When analyzing CA and EQR and their scores on various entities, the following observations
emerge: CA’s high scores (> 0.8) and zero scores conform well to human judgment, while
it shows more errors in the range of non-zero scores to mid-level scores. For example, the
1994 song “Dummy Crusher” by Kerbdog receives a CA score of only 0.05 on the Wikipedia
page with the same title, while its EQR score is 1. “Dummy Crusher” happens to also be a
popular online game, which likely means that many users who issue the query are looking
for the game rather than the song, hence they will skip the Wikipedia link in favor of the
“Play Dummy Crusher” game URL. EQR, on the other hand, is based on the information
that all of the users who land on the Wikipedia page after a query have issued a “Dummy
Crusher” query. While this set of users may be very small compared to the ones who are
looking for the game, EQR is not influenced by popularity.

A closer look at the cases where CA assigns a low score to an entity that is actually salient
on the page leads to the hypothesis that two main reasons may contribute to this error.
First, popular entities such as celebrities are likely to trigger video and image search results
in the SERP, which may cause the user to skip the Wikipedia page in favor of the more
visually attractive content. Second, news and entertainment articles about celebrities may
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be skipped in favor of image galleries or more comprehensive web pages about the celebrity,
their currently popular TV show, etc. In general, the “skipping” behavior exploited by
CA is influenced by many factors of search result presentation and popularity that are
independent of the aboutness of the displayed pages, as hypothesized in Section 4.2.1.

For EQR, we again observe that the high scores correspond nearly without error to
the human assessment. The mid- and low range of scores, however, show better reliability
than in CA. For example, a celebrity who is the subject of an entertainment news article is
correctly scored highly by EQR. One notable source of low score errors for EQR is spelling
or naming variants. “Margarita Island” gets a high salience score on the Wikipedia page
for “Isla Margarita”, while “Isla Margarita” itself gets a low score, presumably because the
Spanish original term is not used as often in English queries as the English variant.

To summarize, while EQR proves to be the more reliable soft labeling method, both
EQR and CA have shortcomings: CA is unreliable when external factors influence the
click/skip behavior, such as position bias and popularity. EQR, on the other hand, suffers
from spelling and naming variations. Note, however, that the latter cause for error is
more easily remedied (for example by conflating queries/entities that have a strong lexical
similarity).

6.4.2 Prediction Errors

We turn now to the prediction errors in EQR ALL versus CA PJP. We find that in those
cases where the two models make significantly different predictions, EQR ALL often has
the higher entity salience score. Our features tend to lead to improved performance in cases
where a salient entity is hidden in a less conspicuous position, e.g., when it is not present in
the title or in the first paragraph. In these cases, CA PJP often underestimates salience.
A common problematic case for both models is the presence of salient entities in banners
on the web page. While these entities are typically not salient (e.g. the entity “BBC News”
on the banner of a news story), there are exceptions when the page is actually the home
page for the entity. While our current features are not sufficient to make the proper distinc-
tions, more sophisticated features could potentially solve this problem. For example, the
structure of the text on the page (article-type, multi-paragraph, multi-sentence text versus
menu/navigation-type content) might be a helpful cue in these cases. Not unexpectedly,
both models also struggle when a web page contains multiple lexical variants of an entity’s
name (e.g. the baseball star Troy Tulowitzki and his nickname Tulo), indicating that adding
coreference resolution for entities (and pronouns) to our system would help.

7. Conclusion

Mining meaningful connections between entities and content has proven difficult because of
the large percentage of entities that are not salient or central to the documents in which they
occur. This paper formalizes and addresses the task of ranking and classifying entity-URL
pairs according to the salience of the entity in the document. We propose a system with the
following properties: the system is cost-effective to build and improves upon the state of the
art. To eliminate the need for expensive manual annotations, we propose weakly-supervised
learned models combined with a novel method for automatically labeling large quantities
of training data by leveraging usage behaviors found in web search logs. This, along with
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an extensive feature set leads to significant improvements over the current state of the art
on both head and tail distributions of the web. As no public data exists to date to evaluate
this task, we design and release to the research community a gold standard data set with
salience annotations, representing the head and tail distributions of pages on the web.
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