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ABSTRACT 
We report on a census of the types of HTML tables on the Web 
according to a fine-grained classification taxonomy describing the 
semantics that they express. For each relational table type, we 
describe open challenges for extracting from them semantic 
triples, i.e., knowledge. We also present TabEx, a supervised 
framework for web-scale HTML table classification and apply it 
to the task of classifying HTML tables into our taxonomy. We 
show empirical evidence, through a large-scale experimental 
analysis over a crawl of the Web, that classification accuracy 
significantly outperforms several baselines. We present a detailed 
feature analysis and outline the most salient features for each table 
type. 

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing; I.2.6 [Artificial Intelligence]: Learning – 
knowledge acquisition. 

General Terms 
Algorithms, Experimentation, Measurement. 

Keywords 
Information extraction, structured data, web tables, classification. 

1. INTRODUCTION 
A wealth of knowledge is encoded in the form of tables on the 
World Wide Web. Mining this knowledge has the potential to 
power many applications such as query expansion [7] and textual 
advertising [13]. Recent efforts have focused on teasing apart 
tables consisting of relational information from those used strictly 
for multi-column layouts and formatting [13], and other efforts on 
extracting schemas and knowledge in the form of relational tuples 
[1][4][5][6][10][14]. 

Relational tables considered in this paper encode facts, or 
semantic triples of the formp, s, o, where p is a predicate or 
relation, s is the subject of the predicate and o is its object. These 
tables may be rendered in many different ways as illustrated in 
Figure 1. Various triples may be extracted from the tables, such as 
for example Price, Angels & Demons DVD, $22.99 and List 
Price, Angels & Demons Blue-ray, $39.95. 

Each relational table consists of a schema, and each table type 
poses different challenges for extracting the schema and the 
encoded knowledge (semantic triples). For example, in order to 
extract the triple Price, Angels & Demons DVD, $22.99 from 
Figure 1, a system would first have to recognize that the first 
column consists of attributes (i.e., the predicates) and that the 
second column consists of the values of these attributes (i.e., the 
objects). The subject of the predicates, “Angels & Demons DVD”, 
is completely outside of the table and may only be found in the 
title of the page or in some anchor text linking to the document. 

Although some table types have been identified in the literature 
(e.g., see [14]), there is a pressing need for characterizing all the 
types on the Web, for estimating their relative importance, and for 
ultimately extracting the knowledge contained in these tables. 

In this paper, we propose a table type taxonomy, discovered 
empirically through a large-scale census of tables on a large crawl 
of the Web. We present the relative frequencies of these tables 
and show that the most frequent table type, attribute/value tables, 
has been mostly ignored in the extraction literature. Extracting the 
actual semantic triples is outside of the scope of this paper. 
However, for each table type that encodes relational knowledge, 
we discuss the open challenges for extracting from them schemas 
and semantic triples, in the hope of spawning new research 
directions for extraction. We then propose machine learning 
algorithms for classifying all the tables on the web according to 
the taxonomy, leveraging an extensive set of rich layout features, 
structural content features, and lexical features. Finally, we 
empirically show, by means of large-scale classification 
experimentations, that overall classification accuracy is 75.2%.  

The main contributions of this paper are summarized as follows: 

 We propose a fine-grained table type taxonomy and 
their relative frequencies through a census of HTML 
tables on a large crawl of the Web;  

 We outline the main open challenges for extracting 
semantic triples from each table type; 

 We propose a supervised classification model and a rich 
set of features for automatically classifying Web tables 
into our table type taxonomy; 

 We report on a large empirical study showing that our 
classification model significantly outperforms several 
baselines. 

The remainder of this paper is organized as follows. In the next 
section, we present related work in table identification and 
knowledge extraction. Then, in Section 3, we present our table 
type taxonomy and describe open challenges for extracting from 
them semantic triples. Section 4 outlines our supervised 
classification model and our rich set of features, and Section 5 
reports our experimental results. We finally conclude in Section 6. 
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3.2.1.1 Vertical Listings 
These tables list one or more attributes for a series of similar 
entities. For example, it could be a table where the capital and 
population for several countries (one per line) are listed. 

The biggest challenge in extracting semantic triples from vertical 
listings is the identification of which column lists the subject and 
which columns list the predicates. Often, the subject is the first 
column, but header columns or reordering are possible. The 
objects of the triples may be extracted directly from the cell 
values3. 

3.2.1.2 Horizontal Listings 
Similar to VERTICAL LISTINGS, horizontal listings present their 
subjects in one row and their predicates in rows. These tables are 
often used in order to compare items (e.g., comparisons of product 
features) or to list elements with additional information (e.g., a list 
of conference participants with affiliations). An example could be 
a table comparing the predicates “Resolution”, “Sensor”, etc., for 
two subjects, digital cameras “Nikon D80” and “Canon Digital 
Rebel XTi/400D”. 

Identifying the row containing the subjects and predicates pose 
the biggest extraction challenge from this table type. As for 
VERTICAL LISTINGS, the objects of triples may be extracted directly 
from the cell values3. 

3.2.1.3 Attribute/Value 
ATTRIBUTE/VALUE tables are a specific case of VERTICAL LISTINGS 
and HORIZONTAL LISTINGS. The distinguishing factor is that they 
often do not contain the subjects in the table. ATTRIBUTE/VALUE 
tables are often used as factual sheets about an entity. For 
example: A table containing specifications of a digital camera, 
where the table does not contain the actual camera name. In this 
case, the whole webpage was about the digital camera Nikon 
D5000 so it was not necessary to repeat it in the table. 

It follows that the biggest challenge in extracting semantic triples 
from ATTRIBUTE/VALUE tables lies in the detection of the subject 
of the table (normally, all triples extracted from an 
ATTRIBUTE/VALUE table contain the same subject.) We call this 
particular open research problem Protagonist Detection. We show 
later in this section that this table type is one of the most common 
relational tables on the Web. 
                                                                 
3 Beyond the discovery of which columns and rows list subjects, 

attributes, and objects, there are significant challenges in 
normalizing objects, finding canonical forms for subjects and 
objects, and fusing triples across tables. This paper does not 
address the extraction of semantic triples beyond identifying the 
structural location of the triples. 

3.2.1.4 Matrix 
MATRIX tables have the same value type for each cell at the 
junction of a row and a column. The row and column headers are 
normally the subject, but the object is only obtained by combining 
the 2 subjects together. The predication is often not contained 
explicitly in the table. For example, a table giving the number of 
traffic accidents per month (rows) and per state (columns) is of 
type matrix. 

3.2.1.5 Calendar 
This table type is a specific case of the MATRIX type, differing 
only in its semantics. In CALENDAR tables, the subject of the 
triples is a date and the predicates are either a generic semantic 
relation such as “occurs-on” or relations such as “performance-
date” or “lunch-special”. For example: a calendar listing the 
performances at Los Angeles concert venues. In this case the 
predicate would be “performance-date” and the objects are the 
values of the cells. The hardest extraction challenge from 
CALENDARS lies in the discovery of the predicates, which 
oftentimes are not explicitly stated in the table. 

3.2.1.6 Enumeration 
ENUMERATION tables list a series of objects that have the same 
ontological relation (e.g., hyponomys, meronymys, or siblings). A 
table enumerating a list of alphabetic letters or a list of camera 
models would be considered as ENUMERATION. For example: an 
enumeration of U.S. States and Territories. 

The major extraction challenge for ENUMERATION tables is the 
discovery of the predicate. Oftentimes, it is not explicitly listed 
and may not even occur anywhere on the web page. In the 
example, the predicate “is-a” (or hyponym-of) may not be listed 
anywhere on the page from where it came. Using corpus count 
statistics of patterns such as “X is a Y” and “X is part of Y” 
between cell values may give insights into the predicate [11]. The 
subjects of the semantic triples are the cell values and the object is 
oftentimes the header row. Similar to ATTRIBUTE/VALUE tables, 
ENUMERATION tables don’t always explicitly state the object in the 
table (e.g., a webpage titled U.S. States may just contain a table 
listing them without explicitly stating in the table that they are 
U.S. States.) This poses another significant extraction challenge.  

3.2.1.7 Form 
Similar to ATTRIBUTE/VALUE tables, FORM tables are composed of 
input fields for the user to fill or select. A typical example of this 
type is a user/password input form. The input fields are the 
missing values of an ATTRIBUTE/VALUE table meant to be filled by 
the user. For example: a FORM table requesting contact 
information. 

Figure 2. Table type taxonomy. 
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There is typically no subject for semantic triples in FORM tables. 
The predicates are most often form labels and the objects are what 
is requested from the user. 

3.2.1.8 Other 
In some cases, there is an underlying relation between the 
elements in a table, but it doesn’t fit within the previously 
described types. Since those cases are very rare (a total of 2% of 
tables for all of them), we do not present them in this paper. An 
example is a table presenting the score for each period of two 
basketball teams for a given game, which cannot be classified as 
VERTICAL LISTING since a game is a pair-wise relationship and 
another team cannot be added to the same table.  

3.2.2 Layout Tables 
We now present two table types that do not contain any 
knowledge (i.e., non-relational tables) and are used strictly for 
layout purposes. 

3.2.2.1 Navigational 
These tables are composed of cells organized for navigational 
purpose (e.g., the product categories on an online shopping site 
such as Amazon.com). There are no clear relations between the 
cells, except that for navigating within or outside of the site. 
While ENUMERATION could also be considered NAVIGATIONAL, we 
distinguish it since semantic triples (knowledge) may be 
extracted.  

3.2.2.2 Formatting 
This table type accounts for a large portion of the tables on the 
web where the only purpose is to organize visually some 
elements. It could be used for laying out pictures with text or 
formatting a webpage. FORMATTING could also be seen as the 
default type of tables where nothing is of interest for a knowledge 
extraction task. 

3.3 Table Type Distribution 
In this section, we estimate the proportion of each table type of 
our taxonomy, presented in the previous section, in order to 
understand how tables are used on the Web. We randomly 
sampled 5000 tables from our 8.2 billion tables described in 
Section 3.1. For each table, we asked a paid human editor to 
classify it according to the taxonomy presented in Figure 2. The 
resulting table type distribution is illustrated in Figure 3. 

Not surprisingly, the vast majority of tables are used for layout 
purposes (i.e., non-relational tables). FORMATTING and 
NAVIGATIONAL make for 88% of the annotated sample. Comparing 
with the corpus estimates presented in [1] on relational tables, 
which they define as consisting only of VERTICAL LISTING and 
HORIZONTAL LISTING, we capitalize a 2.5% tables. This 

discrepancy might be due to differences in the interpretation of 
such relational tables by the editors. For example, our definition 
of VERTICAL LISTING includes tables listing blog posts with an 
associated date or a list of tracks on a CD with track numbers 
(ignored in [1]). Moreover, while the ATTRIBUTE/VALUE table type 
was discarded in their work as being non-relational tables, we 
argue in this paper that they should be considered as single row 
relational tables (see Section 3.2.1.3). While some might contain 
uninteresting information such as user profiles, others contain 
useful knowledge such as the specification of a digital camera. 
This table type represents more than 2% of the tables found on the 
Web. 

In the following section, we propose a very simple filter for 
eliminating many of the layout tables, losing very few knowledge-
rich relational tables. This is important to reduce the amount of 
data to process downstream. 

3.4  Filtering 
Although Layout tables such as FORMATTING and NAVIGATIONAL 
may be useful for page structure analysis and segmentation, they 
are of no interest for information extraction engines. Similar to 
[1][12], we filter out Layout tables by ensuring that accepted 
tables adhere to the following conditions: 

 Minimum of 2 rows 
 Minimum of 2 columns 
 No cell with more than 100 characters in it. 

Applying these simple rules reduces drastically the numbers of 
tables to process by a factor of more than 80% to 1.3 billion. 
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Figure 4. Table type distribution of tables removed during the
filtering step of Section 3.4. 

Figure 5. Table type distribution of remaining tables after
applying the filter from Section 3.4. 
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Figure 3. Table type distribution on a large crawl of the Web. 



In order to estimate the impact of this filter on extraction recall, 
we annotated a random sample of 200 eliminated tables. The 
results are presented in Figure 4. 

Applying this filter eliminates mainly Layout tables (93% for both 
FORMATTING and NAVIGATIONAL). The most common false 
negative is the table type FORM, which in itself contains little 
knowledge without first being filled in by a user. 

The filter also reduces the number of pages carrying HTML 
tables. The average number of tables per document drops from 
more that 9 to 2.7. About 45% of the original documents 
contained only discarded tables. 

Among the 1.3B remaining tables (representing 560M unique 
tables), a sample of 5000 was judged again according to the table 
type taxonomy in Figure 2. The results are illustrated in Figure 5. 

Now, only half the tables were judged as FORMATTING. The two 
next most frequent table types are knowledge-rich: 
ATTRIBUTE/VALUE at 16% and VERTICAL LISTING at 15%. 

4. FINE-GRAINED TABLE TYPE 
CLASSIFICATION 
4.1 Modeling Approach 
Our classification approach adopts a supervised machine learning 
model. Specifically, we use a Gradient Boosted Decision Tree 
classification model - GBDT [8], which consists of an ensemble 
of decision trees for each class, fitted in a forward step-wise 
manner to current residuals. Friedman [8] shows that by 
drastically easing the problem of overfitting on training data 
(which is common in boosting algorithms), GDBT competes with 
state-of-the-art machine learning algorithms such as SVM [9] with 
much smaller resulting models and faster decoding time, both 
critical for our production system. The model is trained on a 
manually annotated random sample of entities taken from the full 
list of tables, using the features described in the next section. 

4.2 Features Classes 
In previous work, the problem of table type classification has been 
mostly tackled as a binary classification problem. The goal was to 
separate genuine vs. non-genuine tables [Wang and Hu] or 
relational vs. non-relational tables [Cafarella et al.]4. Since we 
are proposing a much finer grained classification, our model 
requires a much larger and refined set of features in order to 
distinguish between the different table types. Also, the deeper 
classification problem makes direct comparison over state of the 
art difficult. 

Instead of only considering global features for the table as a 
whole, each (non-global) feature was extracted per row and per 
column. The intuition is that some table types will present a high 
consistency in one of those dimensions. For example, VERTICAL 

LISTINGs are likely to have consistent values in columns, while 
variance should be higher on the rows. However, since table size 
is variable, it was not possible to generate features for every row 
and column. This would have caused a training data sparsity 
problem for high dimensional tables and could result in thousands 
of features to account for in the model. Instead, features where 
only generated for the two first rows and columns, as well as the 
last row and column. When tables only contain 2 rows (or 

                                                                 
4  Genuineness and relational referring to the same concept as 

relational tables defined in Section 1. 

columns), the last row (or column) is equal to the second one, 
which ensures a denser feature space. 

Features are grouped into three distinct classes. The global layout 
feature class is the only one accounting for the structure of the 
table as a whole. The two remaining classes, layout features and 
content features, are generated over rows and columns. Below we 
describe each feature class and list the individual features. 

4.2.1 Global Layout Features 
Below we list global features that capture structural statistics 
about the table: 

 max_rows: Maximum number of rows for each column. 
 max_cols: Maximum number of columns for each row. 
 max_cell_length: Maximum cell content length in 

characters (this exclude any html tags it could contain). 

Note that these features are also used in the filtering step in the 
first phase of the extraction (see Section 3.4). 

4.2.2 Layout Features 
Layout features are applied per column and per row. They are 
solely based on the size of the cells and their variance. 

 avg_length: Average length of cell cleaned of tags 
along a column or a row. 

 length_variance: Variance in cell length for a column 
or a row. 

 ratio_colspan: Ratio of cells in a column or a row 
generated by a colspan attribute. For example, if a row 
has 2 cells and one of those has a colspan=4 (illustrated 
in the table below), the ratio_colspan would be equal to 
3/5=0.6, meaning that 3 of the columns displayed are 
generated by a colspan. 
 

col#1 col#2 colspan=4 span span span 

 
 ratio_rowspan: Ratio of cells in a column or a row 

generated by a rowspan attribute. 

4.2.3 Content Features 
The following set of features focus on cell content. Two 
subdivisions can be distinguished based on whether the feature 
involves html tags (html features) of textual content (lexical 
features). 

4.2.3.1 Html features 
These features focus on the html tags contained in cells. 

 dist_tags: Ratio of distinct tags in the row/column. After 
removing tag attributes and all text, this feature assesses 
how different the cell tag structure is for a given 
row/column. 

 ratio_th: Ratio of cells containing table header <th> 
tags. Table header tags are more likely to be used in 
tables containing structured data. 

 ratio_anchor: Ratio of cells containing an anchor text. 
This is a useful feature in order to identify tables used 
for NAVIGATIONAL purposes. 

 ratio_img: Ratio of cells containing an image tag 
<img>. Tables containing several images are more 
likely to be FORMATTING tables. 

 ratio_input: Ratio of cells containing an <input> tag. 
This feature is a good clue in order to identify the FORM 
table type. 



 ratio_select: Ratio of cells containing a drop down 
<select> tag. Like the previous feature, this is a good 
clue in order to identify the FORM table type. 

 ratio_f: Ratio of cells containing a font change. This 
includes <b>, <u>, <font> and <i> html tags. 

 ratio_br: Ratio of cells containing a line break tag 
<br>. 

4.2.3.2 Lexical features 
Below we list features capturing textual patterns within the cells. 

 dist_string: Ratio of distinct strings in the row/column. 
After replacing all digits by the character “#”, this 
feature assesses how different the cell content is for a 
given row/column. 

 ratio_colon: Ratio of cells ending with the colon 
character. This feature is a useful indicator for the 
ATTRIBUTE/VALUE table type. 

 ratio_contain_number: Ratio of cells containing a digit. 
This feature is a good indication for columns or rows 
listing measures (e.g. temperature, area…). 

 ratio_is_number: Ratio of cells where the content is a 
number. A high ratio is likely to indicate a VERTICAL or 
HORIZONTAL LISTING. 

 ratio_nonempty: Ratio of non-empty cells. 

5. EXPERIMENTS ON TABLE TYPE 
CLASSIFICATION 
Depending on the type of table, the knowledge it contains will be 
structured in different ways. An accurate table type classification 
is therefore necessary in order to extract knowledge from these 
tables. 

5.1 Setup and baselines 
Section 3.1 describes our Web crawl and our extraction 
methodology of obtaining all the tables from this crawl. After 
applying the filtering algorithm from Section 3.4, we were left 
with 1.3 billion tables. We randomly sampled 5000 tables from 
these and had 10 paid editors classify them into our table type 
taxonomy illustrated in Figure 2. After the first pass of annotation, 
two separate paid expert editors went over and adjudicated the 
tables with disagreements (slightly over 10% of the overall 
annotations). This results in a high quality test data set, forming 
the base of our experiments reported in this section. 

Prior art mostly focused on a very coarse-grained table 
classification between two classes: genuine (those containing 
relational knowledge) and non-genuine (those tables used for 
layout purposes). In Section 5.5, we specifically discuss a 
comparison of our work with prior art. For our classification 
analysis on the full table type taxonomy presented in this paper, 
we use the following heuristic baselines: 

 FORM: The most singular elements for this table type are 
input and select html tags. If we find these tags then we 
classify the table as FORM. 

 ATTRIBUTE/VALUE: After excluding tables matching the 
previous heuristic, this table type typically contains a 
colon at the end of attribute cells. This heuristic 
classifies tables as ATTRIBUTE/VALUE if we find colons 
in each cell of a column. 

For the other table types, there is no obvious single feature that 
can be used as evidence for creating a heuristic. For comparisons 
on these types, we defined several baseline versions of our 
classifier using the different feature families presented in Section 
4.2, separately. 

5.2 Classification Analysis 
20-fold cross-validation was used in order to evaluate each system 
and measure statistical significance. We randomly generated 20 
non-overlapping test sets composed of 250 examples each, while 
the remaining 4750 examples are used for training purposes. This 
setting allows computing the confidence bounds for each table 
type classification. GBDT model parameters were set globally on 
a separate held-out development set and are as follows: 

 Number of trees = 100: The number of decision trees in 
the boosting procedure; 

 Minimum number of samples per node = 2: The 
minimum number of training samples per node; 

 Best-first search nodes = 6: The number of nodes for 
best-first search in tree growing. 

For each system, we report 3 measures: precision (P), recall (R) 
and F-measure (F). The results reported in Table 1 are an average 
over the 20 runs for each table type. They correspond to the 
maximum recall point over all classes (every test example gets 
classified). The overall TABEX accuracy was 75.2%. Note that a 
comparison against prior art is discussed later in Section 5.5. 

The first observation regarding the two heuristic-based baselines 
is that FORM can be identified with very high recall using a simple 

P R F P R F P R F P R F P R F

Baseline ‐       ‐       ‐          ‐       ‐       ‐       0.457  0.562  0.510  ‐       ‐       ‐       ‐       ‐       ‐      

Global Features 0.597  0.842  0.720      0.300  0.045  0.173  0.390  0.267  0.329  0.397  0.273  0.335  ‐       ‐       ‐      

Layout Features 0.781  0.866  0.824      0.456  0.216  0.336  0.643  0.661  0.652  0.598  0.582  0.590  0.231  0.088  0.160 

Html Features 0.804  0.841  0.823      0.474  0.282  0.378  0.618  0.704  0.661  0.620  0.543  0.582  0.265  0.097  0.181 

Lexical Features 0.810  0.883  0.847      0.473  0.269  0.371  0.777  0.721  0.749  0.691  0.694  0.693  0.287  0.132  0.210 

TabEx 0.836  0.873  0.855      0.545  0.353  0.449  0.767  0.764  0.766  0.717  0.720  0.719  0.357  0.126  0.242 

P R F P R F P R F P R F P R F

Baseline ‐       ‐       ‐          ‐       ‐       ‐       ‐       ‐       ‐       0.2902 0.9912 0.6407 ‐       ‐       ‐      

Global Features 0.125  0.016  0.071      0.586  0.806  0.696  0.333  0.333  0.333  0.167  0.019  0.093  0.050  0.050  0.050 

Layout Features 0.319  0.164  0.242      0.919  0.888  0.904  0.500  1.000  0.750  0.362  0.116  0.239  0.431  0.225  0.328 

Html Features 0.456  0.281  0.369      0.709  0.697  0.703  0.500  0.500  0.500  0.680  0.630  0.655  0.500  0.201  0.351 

Lexical Features 0.419  0.266  0.343      0.842  0.872  0.857  0.667  0.667  0.667  0.513  0.265  0.389  0.625  0.399  0.512 

TabEx 0.441  0.302  0.372      0.941  0.882  0.912  0.200  0.400  0.300  0.781  0.567  0.674  0.639  0.319  0.479 

Formatting Navigational Attribute/Value Vertical Listing Horizontal Listing

Enumeration Calendar Matrix Form Others

Table 1. Classification performance of TabEx on each table type compared with various baselines. 



rule based on <input> and <select> tags. However, this heuristic 
lacks precision (only 29%). 

From the results obtained using only the Global Features, the lack 
of modeling power is clearly exposed. Nevertheless, the 
CALENDAR type seems to benefit from such features with almost 
70% F-measure. This observation follows the intuition that 
calendars should have a pretty standard number of columns and 
rows (representing the days of the week and the number of weeks 
in a month). Using only the Layout Features improves greatly 
over the simpler Global Features with the most dramatic 
improvement for the MATRIX type. However, because of the low 
representation of the MATRIX type in the full set, the 
improvements are not statistically significant. 

The two baselines using only Html Features or Lexical Features 
show similar performance for most of the classes. As an 
exception, using Html Features improves dramatically the 
classification quality over the other feature sets for the class FORM. 
On the other hand, ATTRIBUTE/VALUE and VERTICAL LISTING types 
benefit the most from Lexical Features. This observation follows 
the intuition that those tables are supposed to contain knowledge 
offering in most of the case certain regularity in its content (e.g. 
columns of numbers or columns containing colon characters). 

Finally, TABEX, our system using all the previously presented 
features performs the best overall in F-measure. Higher scores 
achieved using Layout Features only for MATRIX and the one for 
OTHERS using Lexical Features are not statistically significant 
because there are too few examples of each class (respectively 7 
and 42). But all other results are statistically significant over the 
baseline, with 95% confidence estimated by 20-fold cross-
validation. 

For four of the most preponderant table types in the corpus, Figure 
6 illustrates the classifier precision variation over the 
classification threshold. We observed that classification quality 
for ATTRIBUTE/VALUE and FORM reached nearly 90% precision for 
a  recall of 50%. 

While classification of the ATTRIBUTE/VALUE type looks solid, the 
VERTICAL LISTING type falls behind by an average of almost 10% 
at the same recall point. There is in fact quite a lot of overlap 
between both table types in term of structure and content. This is 
generating some confusion for the classifier (shown in Table 3). 
Moreover, several tables in the training set are borderline cases 
and offer clues from several types at the same time. We will 
discuss this in more detail in Section 5.4. 

5.3 Feature Importance 
The features proposed in Section 4.2 were chosen based on our 
intuition and their perceived ability to help differentiating one 
table type against another. Using GBDT as our machine learning 
model for table type classification, we have the added benefit of 
being able to compute the feature importance based on the overall 
gain yield by this feature for a given class. Table 2 lists the top-5 
most important features for each table type. The feature 
importance is the normalized sum of the gains, defined as the 
improvement in squared error, from every split point across all 
features as describe in [Friedman, 1999]. In this table, feature 
names from Section 4.2 are prefixed with the extraction point: C 
denotes column features, R denotes row features¸ 1 denotes the 
first column/row, 2 denotes the second column/row, and $ denotes 
the last column/row. 

Features based on lexical content matter a great deal for 
identifying relational tables. Among the top-5 most important 
features for ATTRIBUTE/VALUE and VERTICAL LISTING table types, 
four are from the Lexical features family. As predicted by our 
second baseline, the presence of a “colon” in an ATTRIBUTE/VALUE 
table is an extremely important feature. It is however surprising 
that the second row is the center of attention for this feature and 
not the first column. The reason might be that the presence of a 
cell ending with “:” in the second row is more indicative of a 
repetition of such a character in the following rows. Moreover, the 
ratio should be 0.5 in the case of an ideal ATTRIBUTE/VALUE 
formatting (the number of columns containing the attributes and 

C$_RATIO_COLSPAN 100 C$_RATIO_ANCHOR 100 R2_RATIO_COLON 100 R2_DIST_STRING 100 MAX_COLS 100

C1_RATIO_NONEMPTY 84.1 C2_RATIO_ANCHOR 66.6 C1_LENGTH_VARIANCE 59.6 C1_RATIO_NONEMPTY 62.2 R1_DIST_STRING 59.9

C1_DIST_TAGS 82.3 C1_RATIO_NONEMPTY 39.5 C1_RATIO_NONEMPTY 41.6 MAX_COLS 42.6 R2_RATIO_CONTAIN_NUMBER 36.1

C$_AVG_LENGTH 59.9 C2_LENGTH_VARIANCE 18.9 C2_DIST_STRING 30.3 R2_RATIO_COLON 29.0 R2_RATIO_F 12.6

C$_DIST_STRING 46.6 MAX_CELL_LENGTH 16.9 C1_RATIO_COLON 26.2 R$_DIST_STRING 27.8 R1_LENGTH_VARIANCE 9.3

C2_RATIO_ANCHOR 100 MAX_COLS 100 MAX_COLS 100 R2_RATIO_INPUT 100 C2_RATIO_IS_NUMBER 100

C2_DIST_STRING 58.1 C2_RATIO_CONTAIN_NUMBER 12.5 R2_RATIO_TH 30.9 C1_RATIO_INPUT 67.2 R1_RATIO_IS_NUMBER 61.7

C1_RATIO_ANCHOR 20.8 C2_RATIO_IS_NUMBER 12.0 R$_RATIO_IS_NUMBER 18.5 C2_RATIO_INPUT 37.8 MAX_COLS 43.3

R$_LENGTH_VARIANCE 19.1 C1_RATIO_IS_NUMBER 7.5 C1_RATIO_TH 8.9 R2_RATIO_ANCHOR 14.9 C1_LENGTH_VARIANCE 16.7

C$_DIST_STRING 17.8 C$_DIST_STRING 6.3 R$_RATIO_F 3.1 C1_RATIO_SELECT 12.6 C2_AVG_LENGTH 8.7

Formatting Navigational Vertical Listing

Enumeration Calendar Matrix Form Others

Horizontal ListingAttribute/Value

Table 2. Top-5 most important features per table type. 

Figure 6.  Precision vs. Recall graphs for four table types:
ATTRIBUTE/VALUE, VERTICAL LISTING, FORM, and FORMATTING. 
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the values should be identical). Also as predicted, when casting 
the baseline classifier for FORM type tables, the presence of 
<input> and <select> tags is a highly reliable clue in order to 
identify the FORM table type. 

The high precision classification of CALENDAR seems to rely 
mainly on MAX_COLS which shows a large gap with the next 
important feature. CALENDARs tend to have a fixed number of 
columns, one for each day of the week, which is a precise 
signature. Finally, NAVIGATIONAL type classification intuitively 
uses anchor tag features as the main component for its model 
(since navigational tables are used to hyperlink to other 
documents). 

5.4 Error Analysis 
There is a great deal of overlap between the table types defined in 
Figure 2. The <table> container primary use is to structure 
visually some elements which could be knowledge or/and 
design/layout features. For this reason, classification between 
certain types of tables might be harder than others. In order to 
assess how hard it is to distinguish between some types of tables, 
we report in Table 3 the confusion matrix based on the gold 
standard truth given by our editors and the TABEX system 
classification for all of the classes. 

For the VERTICAL/LISTING class we see a fair amount (~11%) of 
misclassification to ATTRIBUTE/VALUE and vice-versa (~8%). It 
underlines the similarities between the 2 table types. Moreover, 
24% of HORIZONTAL LISTINGS have been wrongly assigned the 
ATTRIBUTE/VALUE class, which emphasizes the fact that the latter 
is a specific case of the former (i.e., ATTRIBUTE/VALUE tables are 
defined as horizontal listings with only one column of values). 
Since FORMATTING is a default case for any table that does not fall 
in the other categories (other classes are specifically for relational 
knowledge), there are a fair amount of examples from other 
classes falling into this category (12% across classes). The most 
errors come from the NAVIGATIONAL table type, where 48% are 
misclassified. Once again, it shows how difficult it is to 
distinguish <table> formatting to structure navigational elements 
from generic layout formatting. However, those errors are not 
critical since we are targeting knowledge extraction from 
relational tables (both FORMATTING and NAVIGATIONAL don’t 
contain any semantic triples). 

5.5 Comparison Against Prior Art 
Several methods have been proposed in the past for table 
classification, but most consider it as a binary problem (over 
coarse-grained classes such as genuine (i.e., relational tables) vs. 
non-genuine (i.e., formatting tables)), making a direct comparison 
with our work difficult. 

Penn et al. [12] presented a rule-based system for finding genuine 
tables. This system is described in Section 3.4 and is referred to in 
this section as “Penn et al.” 

Table 4 compares the performance of our system on the simpler 
binary classification task (genuine vs. non-genuine tables). We 
used the test set sampled from our 8.2 billion tables described in 
Section 3.1. Note that the main fine-grained classification 
experiments reported in Table 2 were conducted on a smaller 1.3 
billion table sample after applying the filter described in Section 
3.4 (which is a reimplementation of Penn et al. [12]). In this 
section, we want to compare directly against [12]. Since Web 
tables are highly skewed towards non-genuine tables (see Figure 
3), we implemented a simple baseline, Baseline NG, where the 
class non-genuine is always predicted. 

Penn et al. has good precision and recall on the non-genuine class, 
however it fails at identifying genuine classes. The system is a 
very good initial filter (as used in our approach) for trimming out 
many non-genuine tables. A more specialized system is needed 
however for teasing out the genuine tables from the remaining 
tables. 

The reported accuracy results show small gains as we add our 
features to the Penn et al. system. This is misleading since our 
system focuses only on teasing out genuine tables from those 
tables not caught by the Penn et al. filter. It is therefore better to 
analyze the results on the Genuine class, where we see large gains 
with TabEx. 

Another commonly cited binary classification engine is the 
machine learned model proposed by Wang and Hu [13]5. Direct 
comparison against their results is not possible because of the way 
in which they extracted their test set of candidate tables. A set of 
2851 pages were harvested from Google directory and News 
                                                                 
5 Cafarella et al. [2] is also often cited, however they use the exact 

same model as Wang and Hu [13]. 

Fo
rm

at
ti
n
g

N
av
ig
at
io
n
al

A
tt
ri
b
u
te
/V
al
u
e

V
e
rt
ic
al
 L
is
ti
n
g

H
o
ri
zo
n
ta
l L
is
ti
n
g

En
u
m
e
ra
ti
o
n

C
al
e
n
d
ar

M
at
ri
x

Fo
rm

O
th
e
rs

To
ta
l

Formatting 2235 55 101 67 3 44 0 1 23 3 2532

Navigational 183 135 5 13 2 41 1 0 1 2 383

Attribute/Value 85 5 622 84 7 4 0 1 1 2 811

Vertical Listing 79 10 69 535 14 20 2 3 1 10 743

Horizontal Listing 14 2 14 17 8 0 1 1 0 1 58

Enumeration 70 50 9 26 2 75 0 0 1 0 233

Calendar 1 0 0 7 0 0 69 1 0 0 78

Matrix 0 0 1 3 0 0 1 2 0 0 7

Form 38 2 4 1 0 0 0 0 67 1 113

Others 13 0 4 13 0 0 0 0 0 12 42

Total 2718 259 829 766 36 184 74 9 94 31 5000
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Table 3. TABEX classification confusion matrix. 



using predefined keywords known to have a higher chance to 
recall genuine tables (e.g. table, stocks, bonds…), thus skewing 
the data set. In our case, we extracted a random sample of tables 
from a large 1.2 billion page web crawl. As evidence of 
incomparability, Wang and Hu  [13] report Precision, Recall, F-
measure scores of 0.482, 0.757, and 0.619, respectively on the 
Genuine class for the Penn et al. system, whereas on our dataset 
we report 0.440, 0.542, and 0.486, respectively. 

We can, however, compare our features to those identified by 
Wang and Hu [13]. They identified three feature families: Layout 
features, Content features, and Word group features. The latter 
showed no gains in their results so we did not replicate them in 
our work. The new features that we added in TabEx include: 
ratio_colspan, ratio_rowspan, dist_tags, ratio_th, ratio_f, 
ratio_br, dist_string, and ratio_colon (see Section 4.2 for feature 
descriptions). We used the features ratio_input and ratio_select 
instead of the tag <form> used by Wang and Hu since we found 
that many tables that contain form elements have the <form> tag 
outside of the <table> container. Also, we split their digit feature 
into ratio_contain_number and ratio_is_number. 

Because of our fine-grained taxonomy, many of these new 
features were the most discriminative for various classes in our 
taxonomy, as evidenced in Table 3. For example, ratio_colon and 
dist_string were important for discriminating the 
ATTRIBUTE/VALUE tables, and ratio_th and ratio_f are important 
for discriminating the MATRIX tables. 

Also different in our approach is the extraction mechanism that 
we used for our features, resulting in larger feature vectors 
without a loss in feature density. For each table, we extracted our 
features for the first, second, and last columns and rows, as 
opposed to the table as a whole. Inspection of Table 3 reveals the 
importance of teasing out this structure. 

6. CASE STUDY: EXTRACTION FROM 
ATTRIBUTE/VALUE TABLES 
Section 3.2.1 outlines the challenges in extracting semantic triples 
from relational tables in our table type taxonomy. Extraction of 
these triples is outside of the scope of this paper, however, in this 
section, we propose a solution to a key challenge in extracting 
semantic triples from the most common relational table type, 
ATTRIBUTE/VALUE. 

Tables of type ATTRIBUTE/VALUE have been mostly discarded in 
the prior art as non-relational tables [2], however there is a great 
deal of information that can be extracted from them. While their 
structure easily allows extracting the predicates 
(relations/attributes) and the objects (values) of semantic triples, 
they present a great challenge for extracting the subject. One of 
the major issues for extracting triples p, s, o is to identify the 

first argument of the relation, namely, the subject. We call this 
task protagonist detection. It is very common for protagonists to 
be absent from the ATTRIBUTE/VALUE table itself because they 
appear in context of the protagonist and there is no ambiguity to a 
user what/who the protagonist is. For example, consider a Web 
page describing the specifications of a particular digital camera. 
Since the whole page is about that digital camera, the name of the 
camera may never appear in the specification table (it may just 
occur as the title of the page or in an anchor text referring to this 
page). 

The task of building semantic triples from attributes and values 
extracted from these tables falls back on the identification of the 
protagonist, which is typically unique for a given table. There are 
mainly three different places where the protagonist could be 
found:  

 Within the table: In some cases it is present in the table 
with a generic attribute (e.g. name, model…) 

 Within the document: It appears in the document body 
or the html <title>. 

 Outside of the document: Anchor texts pointing to the 
page often contain the protagonist. 

While table cells and anchor texts offer well defined boundaries 
for identifying protagonist candidates, the document body 
proposes fewer clues. There is however a series of html fields that 
could help in defining entity boundaries such as the headers and 
the font tags. 

6.1 Experiments on Protagonist Detection 
We have carried some preliminary experiments in trying to 
identify the protagonist of ATTRIBUTE/VALUE tables using a corpus 
of 200 manually annotated tables 6 . For each table, an editor 
identified the valid set7 of protagonists among the content of the 
document or the anchor text pointing to it. None of the cases 
presented to the editors lacked a protagonist, highlighting that 
most often ATTRIBUTE/VALUE tables do indeed contain relational 
knowledge. 

In order to identify all possible candidates, even if it is present in a 
paragraph of the document, we took an N-gram based approach. 
All possible 1 to 12-grams were extracted from the document and 

                                                                 
6 It is important to note that extracting semantic triples, and hence 

protagonist detection, is outside of the scope of this paper. This 
section proposes initial steps towards this goal, which we leave 
as future work. 

7 There might be more than one valid protagonist for a given table 
because of lexical variations(e.g., Smith, Reid C. and Reid C. 
Smith) 

Table 4. Comparative analysis on the simpler binary classification task of
genuine vs. non-genuine tables. 

Accuracy
P R F P R F

Baseline NG ‐            ‐            ‐            0.873       1.000       0.932       0.762            

Penn et al. [10] 0.440       0.542       0.486       0.931       0.882       0.906       0.869            

Global Features 0.340       0.236       0.279       0.884       0.864       0.874       0.815            

Layout Features 0.570       0.533       0.551       0.907       0.869       0.887       0.864            

Html Features 0.595       0.567       0.581       0.909       0.868       0.888       0.870            

Lexical Features 0.677       0.618       0.647       0.910       0.872       0.891       0.881            

TabEx 0.704       0.662       0.683       0.914       0.872       0.893       0.888            

Non‐genuineGenuine



the anchor text (obtained from a commercial search engine’s web 
link graph). For each N-gram, its frequency combined with its 
position (e.g. anchor text, title, header, body, table, font…) was 
used as features for our GBDT regression model (see Section 4.1). 
For some tables, as many as 1700 candidates were extracted.  

We ran a 20-fold cross-validation experiment and present the 
results in Figure 8. Our system is labeled ProIde and it is 
compared against a simple baseline system that ranks the 
candidate protagonists according to their anchor text frequencies. 
This baseline achieves a surprisingly high precision of 40%. 
Although our system performs statistically significantly better 
than the baseline (by more than 25%), ProIde concedes 35% 
errors when looking at only the top suggestion and 12% errors 
when considering the top-10. 

Our approach must be improved, but it is a good starting point for 
reducing the set of candidates in a first pass (97% chance to find 
the correct protagonist in the top-100 ranked candidates). Then, 
more expensive approaches could be used in order to verify 
whether the triples hold in other contexts using other extractors. 

7. CONCLUSION 
In this paper, we presented a large census of tables on a crawl of 
the web and proposed a table type taxonomy along with the 
frequencies of each table type. We showed that 88% of the tables 
on the Web are used strictly for layout purposes (i.e., they contain 
no relational knowledge). For each relational table in our 
taxonomy (i.e., tables containing relational knowledge), we 
outlined the major challenges for extracting from them semantic 
triples.  

We presented a Web-scale supervised classification model 
(GBDT) for classifying Web tables into our fine-grained 
taxonomy. We proposed a set of rich layout features, structural 
content features, and lexical features for our model. Empirical 
results over a large experimental classification task showed that 
our model achieves high overall accuracy (75.2%) and high F-
scores on the frequently occurring relational tables. 

We then proposed a supervised GBDT regression model for 
automatically detecting the subject (or protagonist) of 
ATTRIBUTE/VALUE tables. In these tables, the subject of semantic 
triples is typically not found in the table itself, occurring in places 
such as the page title or even anchor text pointing to the page. Our 
method outperformed a simple baseline and showed that it can 
find the correct protagonist in 90% of the cases in its top-20 
ranked candidates, and in 79% of the cases in its top-3. 

The goal of this paper was twofold: i) provide a table type 
taxonomy along with a census of their frequencies on the Web; ii) 
propose a rich fine-grained classification model for assigning Web 
tables to the taxonomy. In future work, we hope to tackle each 
relational table type, one by one, and extract with high accuracy 
all the semantic triples they contain. 
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Figure 7.  Probability of finding a correct protagonist vs. rank. 


