
How do they Compare? Automatic Identification of
Comparable Entities on the Web

Alpa Jain and Patrick Pantel
Yahoo! Labs, Sunnyvale, CA 94089
alpa, ppantel@yahoo-inc.com

Abstract—People love comparing things: from home mortgages
and digital cameras to travel destinations and political philoso-
phies. Today, we are mostly limited to browsing documents after
issuing comparative queries to Web search engines, such as“15-
year vs. 30-year mortgage”, “Nikon D90 / Canon 40D”, “Oahu or
Maui”, and “communism vs. fascism”. There is an opportunity
to improve the search experience by automatically offering
comparisons to users. In this paper, we propose a first step
towards this goal of comparative analysis by mining a broad class
of comparable entities from search query logs and a large Web
crawl. Example comparables that we extract include medicines,
appliances, electronics, vacation destinations, and many more. We
present an extensive empirical analysis showing that our methods
generate comparables with high precision and recall, and showing
that Web search query logs are a superior source for mining such
entities as compared to Web pages, typically used for extraction
tasks. We further compare the performance of our methods with
“related entities” reported by Google Sets, and show a gain of
39% in average precision and a gain of 30% in NCDG.

I. INTRODUCTION

Consumers frequently compare products or services in order
to make an informed selection. For this task, consumers are
increasing relying on web search engines. Search engines
receive many explicit queries for comparisons, such as “Nikon
D80 vs. Canon Rebel XTi” and “Tylenol vs. Advil”. Several
requests for comparisons, however, are implicit. For example,
consider the query “Nikon D80”, which hints an ambiguous
intent: either the searcher is researching cameras (pre-buying
stage), or she is ready to buy a camera (buying stage), or
she is looking for product support (post-buying stage). If
in the pre-buying stage, the searcher is typically interested
in reviews, product specifications, and comparisons with
other similar models. In this paper, we present the task
of detecting comparable entities and generating meaningful
comparisons, and we propose semi-supervised information
extraction methods for extracting comparables from the Web.

Comparable entities can be extracted from various sources, in-
cluding: (a) comparison websites such as http://www.cnet.com;
(b) unstructured documents such as a webcrawl; and (c) search
engine query logs. Web page wrapping methods [10] can
be used to extract comparisons from comparison websites.
Although high in precision, these methods require manual
annotations per web host in order to train the model. Higher
coverage sources, such as a full webcrawl, contain comparable
entities co-occurring in documents in contexts such as lexical
patterns (e.g., compare X and Y) and HTML tables. Common
semi-supervised extraction algorithms from such unstructured
text include distributional methods and pattern-based methods.
Distributional methods [11] model the distributional hypoth-
esis [7] using word co-occurrence vectors where two words
are considered semantically similar if they occur in similar

contexts. The word similarities typically consist of a mixed
bag of synonyms, siblings, antonyms, and hypernyms. Teasing
out the siblings (which often map to comparable entities) has
been addressed using clustering techniques such as Google
Sets and CBC [20]. Pattern-based methods [21], [2], [17], [24]
learn lexical or lexico-syntactic patterns for extracting relations
between words. These are most often used since they directly
target a semantic relation given by a set of seeds from the user.
Thus, to extract comparable entities, we may give as seeds
example pairs, comparable〈Nikon D80, Canon Rebel XTi〉 and
comparable〈Tylenol, Advil〉.

In this paper, we rely on exploiting Web search query logs
and a large webcrawl. Our hybrid method applies both a
novel pattern-based extraction algorithm to extract candidate
comparable entities as well as a distributional filter for ensuring
that resulting comparable entities are semantically similar.
We present a detailed experimental analysis showing that our
extraction method from query logs performs best and greatly
outperforms a strong baseline.

II. EXTRACTING COMPARABLES

An ideal comparables framework requires little manually
generated data, represents characteristics of comparisons and
classes of comparisons, and has high precision and recall. We
formulate our task as that of extracting a comparables relation
consisting of tuples of the form 〈x, y〉, where entities x and y
are comparable. Our algorithm follows these steps.

(1) Identify candidate comparable pairs from web pages and query
logs using information extraction techniques.

(2) Identify a canonical representation for entities in each pair.

(3) Identify and filter out or demote noisy comparables.

A. Pattern-based Information Extraction

To identify instances of comparables in web pages as well
as query logs, we learn extraction patterns. We explored two
pattern learning methods, namely, bootstrapped learning method
based on [17], and an active selection learning method.

Bootstrapped pattern learning: Bootstrapping methods for
information extraction start with a small set of seed tuples from
a given relation. The extraction system finds occurrences of
these seed instances in plain text and learns extraction patterns
based on the context between the attributes of these instances.
Extraction patterns are, in turn, applied to text to identify new
instances of the relation at hand.

At each iteration, both extraction patterns and identified
tuples are assigned a confidence score, and patterns and tuples
with sufficiently high confidence are retained. This process
continues iteratively until a desired termination criteria (e.g.,
number of tuples or number of iterations) is reached. Several

228IEEE IRI 2011, August 3-5, 2011, Las Vegas, Nevada, USA
978-1-4577-0966-1/11/$26.00 ©2011 IEEE

bootstrapping methods have been proposed in the literature,
varying mostly in how patterns are formed and unreliable
patterns or tuples are identified and filtered out [2], [17]. For
our task, we use the bootstrapping algorithm proposed by Pasca
et al. [17], which is effective for large-scale extraction tasks.
Using this bootstrapping method, example learned patterns are:

p1:〈E1〉 vs. 〈E2〉 p6: 〈E1〉 is better than your 〈E2〉
p2:〈E1〉 versus 〈E2〉 p7: 〈E1〉 compared to the 〈E2〉
p3:〈E1〉 instead of 〈E2〉 p8: 〈E1〉 to 〈E2〉
p4:〈E1〉 will beat 〈E2〉 p9: 〈E1〉 or 〈E2〉
p5:〈E1〉 compared to 〈E2〉 p10:〈E1〉 over 〈E2〉

TABLE I
PATTERNS USING BOOTSTRAPPING; E1 AND E2 ARE COMPARABLES.

While these patterns effectively capture the comparison
intent, the resulting output can be noisy due to several reasons.
First, generic patterns such as p10 tend to match a large
fraction of sentences in text collections, and thus, generate
a large number of incorrect tuples. For example, applying
p10 to the text ...jumped over the fence ... would generate an
invalid tuple. Second, lack of prior knowledge about what to
expect as an entity further exacerbates the problem. Despite
the issue of generic patterns, bootstrapping methods have been
successfully deployed for tasks such as, extracting person-
born-in, company-CEO, or company-headquarters relations.
As the attribute values in such relations are homogeneous,
noisy tuples can be potentially identified using named-entity
taggers that can identify instances of a pre-defined semantic
classes (e.g., organizations, people, location). This, in turn,
allows for verifying if values for say the company attribute in
a company-CEO relation is an organization or not. In contrast,
the attribute value in our comparables relation may belong to
a variety of target semantic classes: the tuples, 〈tea, coffee〉,
〈DSL, cable〉, and 〈magnolia, Tilia〉, are all valid instances of
the comparables relation, but the values tea, DSL, and magnolia
belong to different semantic classes. Due to the iterative nature
of this learning process, we expect the quality of the output to
rapidly deteriorate after a small number of iterations.

To alleviate this problem of noisy tuples, we need a way to
early on identify unreliable tuples. For this, we could employ
an active learning framework where humans intervene at each
iteration and suggest tuples to be eliminated. Unfortunately,
manually annotating each candidate tuple can be cumbersome
and thus, instead of identifying noisy tuples we focus on
pruning out patterns likely to generate many noisy tuples. Next,
we discuss our active selection pattern learning method.

Active selection pattern learning: The rationale behind this
approach is that although humans find it difficult to recommend
or generate patterns for a task, they are generally good at
identifying good patterns from bad. With this in mind, we
present the top-N ranking patterns to a human and manually
select a subset of patterns. As humans are requested to choose
from extraction patterns already verified to exist in text, they
are likely to generate reliable tuples. We picked a small set
of extraction patterns from the top-10 patterns generated by
the bootstrapping method. Specifically, we used patterns p1,
p2, p4, and p7 from those listed in Table I To summarize, we
extend bootstrapping extraction methods using active selection
to learn patterns to generate comparables. We run the resulting
extraction methods on two sources, i.e., web pages and query
logs. Upon generating the candidate comparable pairs, we

GeneratePartialCandidates
Input: (A1, A2, .. Am; B) where Ai, B : string
Output: Candidates : set of pairs {X, Y} X, Y : string
Candidates = ∅;
for i = 0 to m do

for j = i to m do
/* ICS */
if i > 0 then

Candidates.insert(A[1:i] + A[i+1:j], B + A[i+1:j]);
end
/* CIS and SIC*/
if j > i then

Candidates.insert(A[i+1:j] + A[1:i], B + A[1:i]);
Candidates.insert(A[i+1:j] + A[j+1:m], B + A[j+1:m]);

end
/* SCI */
forif j < m then

Candidates.insert(A[j+1,m] + A[i+1:j], B + A[i+1:j]);
end

end
end
return Candidates
/* Procedure to generate all candidate representations */ GenerateAllCandidates
Input: (A1, A2, .. Am; B1, B2, ... Bn) where Ai, Bi : string
Output: Candidates : set of pairs {X, Y} X, Y : string
return GeneratePartialCandidates(A1, .. Am; B[1:n]) +

GeneratePartialCandidates(B1, .., Bn; A[1:m])

Fig. 1. Algorithm to generate candidate representations for a comparable.

identify canonical representations for the entities. Textual data
is often noisy or contains multiple non-identical references
to the same entity, and therefore, text-oriented tasks need
to perform data cleaning. Specific to our task of identifying
comparables, new data cleaning issues arise as discused next.

B. Identifying Canonical Representations

Appropriately identifying entity boundaries is a critical step
in automated information extraction. Consider the case of
processing the text, I prefer tea versus coffee using pattern p2

in Table I where after matching the pattern we need to identify
a correct representation of the entities to be included in the
final tuple. Specifically, this text can result in tuples, such as,
〈tea, coffee〉, 〈prefer tea, coffee〉, or 〈I prefer tea, coffee〉. For
text documents such as web pages, a common approach to
boundary detection is to pre-process the text using a named-
entity tagger (e.g., tag instances of pre-defined set of classes
such as, organizations, people, location) or using a text chunker
(e.g., tag noun, verb, or adverbial phrases) such as Abney
chunker [1]. To allow for arbitrary phrases in comparables
relation, we use a text chunker. Specifically, we process the
web pages using a variant of Abney chunker [1], and use the
phrases in a given chunk as an entity when generating a tuple.

Query logs on the other hand do not yield to text chunkers
due to their free-form textual format. Also, the terseness of
queries where only keywords are provided introduces new
challenges. To understand the data cleaning issues when using
queries, below are some examples observed in our experiments:

c1: Nikon d80 vs. d90
c2: 15 vs. 30 year mortgage calculator

The above examples underscore two important points: (a)
generally, phrases that are common to both entities are
specified only once (e.g., nikon in c1); (b) queries may contain
extraneous words that need to be eliminated to generate a clean
representation (e.g., calculator in c2).

Consider a comparable pair P = {x, y}. To construct a
canonical representation for P , we first generate a search space
of candidate representations for both x and y and pick the most
likely representations for both entities combined. Specifically,
given a candidate representation γx, γy for P , we assign a
score R(γx) to γx and a score R(γy) to γy and pick the values
for γx, γy that maximizes the following:

〈γx, γy〉 = argmax
{γx,γy}

{R(γx) · R(γy)} (1)

229

To compute R(γi) for representation γi, we note that this score
is high for a well-represented entity, e.g., R(Nikon d90) >
R(d90) and similarly R(15) < R(15 year mortgage) but
R(15 year mortgage) > R(15 year mortgage calculator). We
derive R(γi) as the fraction of queries that contain a repre-
sentation in a stand-alone form, i.e., query is equal to the
representation. Intuitively, users are more likely to query for
“nikon d90” than “d90.”

We now turn to the issue of generating a search space of
representations for a pair P . Instead of considering combi-
nations of terms in the query string in a brute-force manner,
we hypothesize that the query strings involving comparable
pairs consist of three main sets: (a) a class C, (b) an instance
I , and (c) a suffix S. For example, for c2 I = {15 year},
C = {mortgage}, S = {calculator}; similarly for c1, S = {},
I = {d90}, C = {}. Furthermore, of all six (3!) possible
permutations of these sets only four permutations are likely
to be used to form queries. Specifically, these four cases
are ICS,CIS, SIC, SCI; we eliminate cases ISC and CSI
where the instance and class are not juxtaposed. As final
canonical representations, we want to rewrite both strings x
and y in P in the form IC.

Given a candidate pair P = {x, y}, we explore the space of
representations as follows (see Figure 1): holding one of the
strings (x or y) constant, we construct all possible strings for C
using the four cases listed above. Each value for C is appended
(or prefixed) to the other string that has been held constant. This
process is repeated viceversa for the other string. As a concrete
example, Table II shows examples of representations for c2. To
summarize, we explore a space of candidate representations for
a given pair and pick as the canonical representation the case
which maximizes the representation scores for both entities.

C. Distributional Similarity Filters
As a final step towards a well-represented comparables

database, we need to check if each comparable pair consists
of entities that broadly belong to the same semantic classes.
For example, while 〈Ph.D., MBA〉 is a valid comparables,
〈Ph.D., Goat〉 is not. To support our goal of allowing arbitrary
semantic classes to be represented in the comparables relation,
we employ methods to identify semantically similar phrases
on a large scale. Specifically, we use distributional similarity
methods [11] that model the Distributional Hypothesis [7].

To model the distributional hypothesis, we process a large
corpus of text (e.g., web pages in our case) using a text
chunker. Terms are all noun phrase chunks with some modifiers
removed; their contexts are defined as their rightmost and
leftmost stemmed chunks. We weigh each context f using
pointwise mutual information [4]. Specifically, we construct a
pointwise mutual information vector PMI (w) for each term w
as: PMI (w) = (pmiw1, pmiw2, · · · , pmiwm), where pmiwf

is the pointwise mutual information between term w and feature

f and is derived as: pmiwf = log
(

cwf ·NPn
i=1 cif ·

Pm
j=1 cwj

)
, where

cwf is the frequency of feature f occurring for term w, n is the
number of unique terms, m is the number of contexts, and N
is the total number of features for all terms. Finally, similarity
scores between two terms are computed by computing a cosine
similarity between their pmi context vectors [22].

Case I C S γx γy

ICS

30 year mortgage calculator15 year 30 year
30 year mortgage calculator 15 year mortgage 30 year mortgage
30 year mortgage calculator 15 year mortgage calculator30 year mortgage calculator
30 year mortgage calculator 15 mortgage 30 year mortgage
30 year mortgage calculator 15 mortgage calculator 30 year mortgage calculator
30 year mortgage calculator 15 calculator 30 year mortgage
30 year mortgage calculator 15 30 year mortgage
30 year mortgage 15 30 year mortgage calculator
calculator

SIC

30 year mortgage 15 30 year mortgage calculator
calculator
year mortgage calculator 30 15 mortgage calculator year mortgage calculator
year mortgage calculator 30 15 year mortgage year mortgage calculator
mortgage calculator 30 year 15 mortgage calculator mortgage calculator
mortgage calculator 30 year 15 mortgage mortgage calculator
calculator 30 year mortgage 15 calculator calculator

TABLE II
SEARCH SPACE OF REPRESENTATIONS {γx, γy} FOR PAIR 〈15, 30 YEAR

MORTGAGE CALCULATOR〉 FOR TWO CASES.

A natural question that arises is whether distributional
similarity methods can be used to generate comparables. While
distributional similarity methods could generate comparables,
their output also consists of a mixed bag of other semantic
relations such as synonyms, siblings, antonyms, and hypernyms.
For example, for the word Apple, the distributional thesaurus
generates: pear, strawberry, Microsoft, Nintendo, company,
... Only Microsoft in this list would be considered a valid
comparable entity. It is noteworthy that the output may contain
phrases such as company which are distributionally similar to
Apple, but again invalid comparables.

Most comparable entities fall under a sibling relation,
however teasing these out from a distributional similarity output
is difficult. Instead, we rely on a distributional thesaurus to filter
the output of relation learning methods, in order to generate a
comparables relation. In particular, for each comparable pair
(x, y), we check if y exists in the list of similar terms for x
or viceversa and eliminate all pairs for which the comparable
was not found in this list of similar terms. Alternatively, these
scores can also be used to demote invalid pairs.

So far, our discussion focused mostly on a flat list of
comparables, i.e., we did not consider the relevance score
of a comparable. We studied a variety of functions to score
a comparable pair, while accounting for scores from the
canonical representation and filtering steps. We found that
using a simple frequency-based approach where the number of
times a comparable pairs was queried works well; intuitively,
aggregating over several independently issued queries can
effectively capture the relevance of a comparable.

III. EXPERIMENTAL EVALUATION

A. Data collection

Data sources: We used the following data sets as sources for
finding comparable entities:

Web documents (WB) A collection of 500 million web pages
crawled by Yahoo! search engine crawl.

Query logs (QL) A random sample of 100 million, fully
anonymized queries collected by Yahoo! search engine in the
first five months of 2009. Of these queries, a 5000 query subset
was used as a development set to select a diverse collection of
popular entities for our evaluation described in Section III.

Extraction methods: For our experiments, we combined the
bootstrapped pattern-learning and active selection algorithms
presented in Section II with the two datasets introduced
above to generate four techniques in all. We denote each
of our systems using a two-letter prefix denoting the dataset
(WB=web documents; QL=query logs) and a two-letter suffix

230

Method Nr. of comparables

QL-AS 4,591,343
WB-AS 7,146,982
WB-BT 1,243,121
QL-BT 2,657

TABLE III
SIZE OF COMPARABLES RELATION FOR EACH METHOD.

denoting the extraction method (BT=bootstrapped pattern-
learning; AS=active selection). We further generated two
variants for each method by turning the distributional filtering
stage on and off, denoted by FL when on.

Baseline: We are unaware of any existing system for extracting
comparables. Arguably the most well known is Google Sets
(http://www.sets.google.com), which returns a broad-coverage
ranked ordering of terms semantically similar to a set of queried
terms. We use Google Sets as our baseline by issuing each
entity in our test set and extracting the list of ranked entities
output by the system. We denote this technique as GS. This
results in the following extraction systems:

• QL-BT: Bootstrapped pattern-learning over query logs;
• QL-BT-FL: QL-BT with distributional filtering;
• QL-AS: Active selection over query logs;
• QL-AS-FL: QL-AS with distributional filtering;
• WB-BT: Bootstrapped pattern-learning over 500-million document Web crawl;
• WB-BT-FL: WB-BT with distributional filtering;
• WB-AS: Active selection over 500-million document Web crawl;
• WB-AS-FL: WB-AS with distributional filtering; and
• GS: Our strong baseline using Google Sets.

Table III lists the sizes of the relations generated by each
method without the distributional filter and Table IV lists some
example comparables generated using QL-AS.

Distributional similarity filters: We construct our distribu-
tional similarity database following [19]: we POS-tag our WB
corpus (500-million documents) using Brill’s tagger [3] and
chunked it using a variant of the Abney chunker [1]. We built a
distributional filter from this chunked corpus using the method
outlined in Section II-C.

B. Evaluation metrics
We evaluate the performance of each system using set-based

measures, i.e., precision and recall, as well as using rank
retrieval measures, i.e., normalized discounted cumulative gain
(NDCG) and average precision used in information retrieval.

Recall: Given an entity and a list L of comparables for it, we

compute recall as
|L∩G|
|G| where G is a list of ideal comparables.

Precision: Given an entity and a list L of comparables for it,
we compute precision as Number of correct entries in L

|L| . Additionally,

we also study the precision values at varying ranks in the list.

Average precision (AveP): Average precision is a summary
statistic that combines precision, relevance ranking, and recall.

AveP (L) =
P|L|

i=1 P (i)·isrel(i)
P|L|

i=1 isrel(i)
, where P (i) is the precision of

L at rank i, and isrel(i) is 1 if the comparable at rank i is
correct, and 0 otherwise.

Normalized Discounted Cumulative Gain (NDCG): NDCG
is commonly used to measure the quality of ranked query
results. NDCG examines the fact that ideally, we would like
to see good results at early rank positions, and poor quality
results at lower rank positions. For a given rank R, NDCG

is computed as: NDCG = λ · ∑R
i=1

2g(i)−1

log(i+1) , where g(i) is

the grade (e.g., 10 for a perfect result, 5 for an average result,
etc.) assigned to the result at rank i and λ is a normalization

constant computed as the
∑

i=1 R 2g(i)
log(i+1) for a list generated

by sorting the results in the best grade order.

Entity Comparables

401k ira, pension, sep ira, 457 plan, simple ira, money market funds
density weight, volume, mass, hardness, temperature, specific gravity
plastic bags paper bags, canvas, cotton bags
sod grass, seeds, reseeding, artificial grass
solar panels wind mill, geothermal, fossil fuels, wind turbines, solar shingles
stocks corporate bonds, etf, small cap stocks, equities, commodities

TABLE IV
SAMPLE COMPARABLES GENERATED FROM QUERY LOGS.

Domain Entities

ACT dental implants, bahamas, swimming, mba, apartment
APP whirlpool, nikon d80, canon eos 450d, ipod, mac
AUTOS honda accord, ford explorer, toyota camry, bmw, honda civic
ENT britney spears, angelina jolie, obama, new york yankees, the simpsons
MED tylenol, ritalin, ibuprofen, vicodin, claritin

TABLE V
SAMPLE 25 ENTITIES EVALUATED FOR THE TARGET-DOMAIN EVALUATION.

C. Evaluation methodology
We perform target-domain and open-domain evaluations.

Target-domain evaluation: Our target-domain evaluation fo-
cuses on an in-depth evaluation of various methods for a
pre-defined set of entity classes. Due to the tedious nature
of evaluation of extraction tasks, we restrict ourselves to five
generic classes of entities, namely, Activities (ACT), Appliances
(APP), Autos (AUTOS), Entertainment (ENT), and Medicine
(MED). For each domain, we picked five frequently queried
entities using the training set. Table V shows these 5 categories
along with the entities for each domain.

We conducted two user studies, with 7 participants, to
evaluate the quality of results for a given method. Our
first user study requested a gold set of comparables from
participants. Given an entity e, participants provided two
distinct comparables deemed relevant to e. If the e or its domain
was unknown to a participant, we allowed the participant to
research on the Web and provide an informed comparable. For
example, for Nikon d80, users provided Canon rebel xti, Nikon
d200, Fujifilm Finepix z100.Our second user study requested
users to judge the quality of the comparables on a three-point
grades scale. Starting with an entity, we generated a ranked list
of top-5 comparables from each system to be evaluated. We
took a union of these lists and presented it to each participant.
Participants were asked to rate each comparable in the list as
G for good,F for fair, or B for bad. Each user was requested
about 350 annotations, and overall, our user study yielded
2,450 annotations (inter-annotator agreement using Fleiss’s
kappa [13] ranged between 0.41 and 0.54 indicating a moderate
agreement). Most of the disagreement could be traced to cases
marked F or B, however, for cases marked as G we observed
high kappa values indicating substantial agreement. For each
entity, we picked a final grade based on the majority opinion
of the judgments, and in case of disagreement, we requested
an additional judgment. Using these manual annotations, we
generated another gold set of graded comparables which was
used to compute the NDCG values. We also computed precision
at varying rank and average precision of each list by assigning
a score of 1 to all comparables that were marked G and a score
of 0 to the rest. Note that all comparables graded as fair were
also assigned a score of 0.

Open-domain evaluation: Our open-domain evaluation moves
away from a target domain and examines the quality of
comparables using a random sample of the output generated

231

by each system. Specifically, we draw a sample of pairs of
comparables generated by each method, verify them, and study
the precision and nature of errors for each method.

D. Target-domain Evaluation Results
Recall: Our first experiment was to measure the extent to
which each method identifies comparables desired by our user
study participants. For each entity in our test set (see Table V),
we generated a ranked list of comparables for each method
(i.e., QL-AS, WB-AS, WB-BT, · · ·) and computed the recall
of these lists (see Section III). Table VI compares the recall
of all eight methods against that of GS, and the bold-faced
numbers mark the techniques with highest recall value for
a domain. QL-AS exhibits highest and QL-AS-FL exhibits
close to highest values for recall, suggesting query logs as a
comprehensive source for generating comparables. As expected,
using a filtering step results in a small drop in the recall values
across all methods and all domains. While this drop is relatively
small, the case for APP needs further discussion. Among the
appliances, the query Canon EOS 450d was not found in the
distributional thesaurus and this resulted in degrading recall
for this category. This could be traced to errors by the text
chunker. As hypothesized, using bootstrapping methods to
learn extraction patterns in both cases, query logs and web
documents, results in low coverage of comparables.

We now examine the effect of introducing the filtering step.
In our experiments, we observed that the overall quality of the
output lists substantially improved when using the distributional
thesaurus (Section II-C) as a filter. As a concrete example,
for the entity britney spears the comparables generated by
WB-AS included, paris hilton and bff paris hilton (bff=“best
friends forever”). Interestingly, the phrase bff paris hilton occurs
frequently enough to be ranked higher, and furthermore, our
canonical representation generation method also finds enough
support for this entity. The filtering method on the other
hand, eliminates this entity. To show the improvements by
using a filter, we compare the fraction of gold set entities
that were returned among the top-10 comparables returned by
each method. Intuitively, a good system should return these
entities early on. Table VII shows the percentage of gold set
comparables found in top-10 results for each method, averaged
over all domains. For QL-BT, we observe an increase in the
percentage of gold set comparables that are covered when using
a filter, with the exception of the case we discussed above.
This indicates that the filtering step effectively demotes noisy
tuples and, in turn, boosts the ranks for reliable comparables.
In case of WB-BT, we observe a relatively small improvement
for a few cases. Low performing methods QL-BT and WB-BT
are more sensitive to the filter due to the already small values
of recall. In what follows, we focus on the competing methods,
namely, QL-AS-FL, WB-BT-FL, WB-AS-FL, and GS.

Rank order precision: We now examine the accuracy of each
technique using precision. Figure III-D shows the precision
for each system at varying rank, for each domain, averaged
across all entities in that domain. QL-AS-FL results in a
perfect precision (precision = 1.0) or close to perfect precision
across domains. The less than perfect precision for APP, can
be explained by an example of nikon d80: the system returned
canon as a comparable at rank 1, which was graded as F by our

Method ACT APP AUTOS ENT MED

GS 0.37 0.32 0.50 0.62 0.47

QL-AS 0.77 0.90 0.87 0.95 0.90
WB-AS 0.55 0.37 0.40 0.58 0.52
QL-BT - 0.22 0.03 0.02 0.10
WB-BT 0.07 0.12 0.03 0.20 0.22

QL-AS-FL 0.62 0.35 0.78 0.72 0.85
WB-AS-FL 0.33 0.22 0.40 0.43 0.52
QL-BT-FL - 0.13 0.03 - 0.02
WB-BT-FL 0.05 0.05 - 0.07 0.12

TABLE VI
AVERAGE RECALL FOR EACH METHOD, FOR EACH CATEGORY, MEASURED

USING A USER-PROVIDED GOLD SET.

Method ACT APP AUTOS ENT MED

GS 34 54 60 72 54

QL-AS 56 82 62 64 84
WB-AS 58 56 46 58 58
QL-BT - 5 4 2 12
WB-BT 4 26 2 18 26

QL-AS-FL 76 48 68 70 94
WB-AS-FL 58 56 66 56 62
QL-BT-FL - 4 4 - 2
WB-BT-FL 2 26 - 18 14

TABLE VII
AVERAGE PERCENTAGE OF USER-PROVIDED GOLD SETS IDENTIFIED IN

TOP-10 RESULTS RETURNED BY EACH SYSTEM.

annotators which is treated as incorrect when computing the
precision. All other comparables generated for this entity were
marked G. Comparing WB-AS-FL and WB-BT-FL we observe
that, as hypothesized, using active selection to identify reliable
patterns substantially improves the extraction performance. As
compared to GS, both QL-AS-FL and WB-AS-FL consistently
outperform GS, across all domains.

Table VIII compares NDCG@5 values for each method,
across all entities and target domains. † marks NDCG values
that are a statistically significant improvement over the baseline
of GS. Both QL-AS-FL and WB-AS-FL exhibit a significant
improvement of 30% and 20% gain, respectively, over the
existing approach of using Google Sets. Table IX shows
the NDCG@5 values for each of the five target domains.
Interestingly, for the domain of ACT, using an approach based
on related words as in the case of GS, proves to be undesirable.
This conforms our earlier observations that using distributional
similarty-based methods suffer from being too generic for the
task of comparables. As a specific example, for the entity
apartment, GS generates the following comparables, 1 bath-
room, washing machine, 2 bathrooms which were consistently
graded as B by all participants in our user studies. In contrast,
QL-AS-FL generates comparables, such as, condominium,
house, townhouse which were graded as G by our participants.
We observed similar results for NDCG@10.

Table VIII compares the average precision (AveP) values for
each method and † marks statistically significant improvement
over GS. (Recall that AveP summarizes the precision, recall,
and rank ordering of a ranked list.) Both QL-AS-FL and
WB-AS-FL exhibit a significant improvement of 39% and
36% gain, respectively, over GS. As expected, QL-AS-FL
exhibits highest values for AveP confirming the choice of
active selection over query logs as a promising direction.

E. Open-domain Evaluation Results
The average precision of the relations based on our samples

for QL-AS-FL, WB-AS-FL, and WB-BT-FL, were 86%, 67%,
and 43%, respectively. Table X shows examples of erroneous
facts. A common error observed across all sources is the case
where two entities are to be disambiguated: increasingly, people

232

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5

Pr
ec

is
io

n

Rank

GS
QL-AS-FL

WB-AS-FL
WB-BT-FL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5

Pr
ec

is
io

n

Rank

GS
QL-AS-FL

WB-AS-FL
WB-BT-FL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5

Pr
ec

is
io

n

Rank

GS
QL-AS-FL

WB-AS-FL
WB-BT-FL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5

Pr
ec

is
io

n

Rank

GS
QL-AS-FL

WB-AS-FL
WB-BT-FL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5

Pr
ec

is
io

n

Rank

GS
QL-AS-FL

WB-AS-FL
WB-BT-FL

Fig. 2. Precision at varying rank for (a) AUTOS, (b) APP, (c) ENT, (d) MED, and (e) ACT.

Method NDCG@5 AveP

GS 0.67± 0.11 0.56± 0.13

QL-AS-FL† 0.96± 0.03 0.92± 0.05

WB-AS-FL† 0.86± 0.06 0.86± 0.08
QL-BT-FL 0.54± 0.12 0.38± 0.12

TABLE VIII
AVERAGE NDCG@5 AND AVERAGE PRECISION (AVEP) OVER ALL

CATEGORIES. († INDICATES STATISTICAL SIGNIFICANCE OVER GS.)

Category ACT APP AUTOS ENT MED

GS 0.35 0.51 0.85 0.85 0.80
QL-AS-FL 0.93 0.91 0.99 1.00 0.99
WB-AS-FL 0.81 0.77 0.86 0.93 0.97
QL-BT-FL 0.44 0.47 0.72 0.41 0.62

TABLE IX
AVERAGE NDCG@5 FOR EACH CATEGORY USING A 3-POINT GRADE.

make use of search engines as substitutes for a dictionary,
thesaurus, spell checker: e.g., ’affect vs effect’ or ’cieling
vs. ceiling’ or ’aptitude vs. ability’. Identifying and correctly
addressing such user requests is future work.

Among the valid instances, a large proportion of comparables
involve matches between countries or people(e.g., Barcelona
vs. Chelsea). In particular, 18%, 23%, 17%, of the sample for
QL-AS-FL, WB-AS-FL, WB-BT-FL, respectively, involved a
match. Related to this, are instances involving court cases (e.g.,
Brown vs. Board of Education) which were rarely observed
(e.g., 1 among our sample for QL-AS-FL). While these are
valid comparables, as an extension of our work, we plan to
classify such comparables. To understand this, comparables
for Hong Kong contain Shanghai and New York, however, at
third position, we observe Bahrain due to soccer matches.

IV. RELATED WORK
The problem of automatically extracting structured informa-

tion from text documents has received significant attention in
recent years, in part spurred by the Message Understanding
Conferences (MUC). Earlier approaches to building information
extraction systems relied on hand-crafted extraction rules [6].
Recent efforts have automated the task of generating extraction
rules using bootstrapping methods [2], [17]. Extraction systems
based on machine-learning and statistical methods have also
been extensively studied [5], [23], [14]. These methods rely on a
set of labeled examples of the extraction task and automatically
learn extraction rules that maximize the output quality over
these examples. Oftentimes, the main difficulty in using
such supervised methods to build an information extraction
system lies in the tedious task of generating sufficiently many
labeled examples. To address this shortcoming, semi-supervised
methods have also been studied, which aim to reduce the
amount of necessary labeled data [12]. In general, existing
solutions have considered the construction of reliable extraction
systems for well-defined relations with homogeneous attribute
values (e.g., Company-Headquarters, Company-CEO, Person-
Born-In.) In this paper, we focused on a bootstrapping method
and adapted methods proposed by Pasca et al. [17] for the task
of mining comparables. Several specialized extraction tasks

QL-AS-FL 〈capital, debt〉,〈christian, americans〉, 〈bias, biased〉
WB-AS-FL 〈ignored, hated〉, 〈fieling, feiling〉, 〈game, company〉
WB-BT-FL 〈best case, worse case〉, 〈directors, writers〉, 〈carmel, caramel〉

TABLE X
INCORRECT COMPARABLES FROM VARIOUS SOURCES.

have been successfully investigated and our work is similar
in spirit to such settings. Examples include building a large
scale collection of acronyms and their expansions [15], and
identifying sentiments and reviewer opinions [16].

Our work heavily relies on using query logs to gather
structured information. Increasingly, research efforts are looking
into exploiting valuable information available in query logs. For
instance, [18] showed how interesting attributes can be derived
from user queries. We believe this method is complementary to
our approach and can be used in concert with our comparables
database generation methods to build descriptions of compara-
bles. A preliminary version of our work [8] (a “poster paper”)
briefly introduces the generic framework without giving details
on how to build such a framework. In this paper, we focus
on building an end-to-end system for building a comparables
database. [9] uses supervised approach to a related problem
of identifying comparitive sentences in documents; in contrast
our goal is provide comparable entities mined from both query
logs and web documents.

V. CONCLUSION
This paper introduced a new web search paradigm that allows

users to carry out comparative analysis. Our methods work
hand-in-hand with existing information extraction and semantic
similarity identification techniques to build a comprehensive
yet precise collection of comparable entities. Many interesting
research problems such as generating self-explanatory compa-
rables, ranking unreliable comparables, etc. remain open.

REFERENCES

[1] S. Abney. Learning taxonomic relations from heterogeneous sources of evidence. In Principle-Based Parsing. Kluwer
Academic Publishers, 1991.

[2] E. Agichtein and L. Gravano. Snowball: Extracting relations from large plain-text collections. In DL, 2000.
[3] E. Brill. Transformation-based error-driven learning and natural language processing: A case study in part of speech

tagging. Computational Linguistics, 21(4), 1995.
[4] K. Church and P. Hanks. Word association norms, mutual information, and lexicography. In ACL, 1989.
[5] W. Cohen and A. McCallum. Information extraction from the World Wide Web (tutorial). In KDD, 2003.
[6] O. Etzioni, M. J. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S. Soderland, D. S. Weld, and A. Yates.

Web-scale information extraction in KnowItAll (preliminary results). In Proceedings of WWW-04, 2004.
[7] Z. Harris. Distributional structure. Word, 10(23):146–162, 1954.
[8] A. Jain and P. Pantel. Identifying comparable entities (poster paper). In CIKM, 2009.
[9] N. Jindal and B. Liu. Identifying comparative sentences in text documents. In SIGIR, 2006.

[10] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A brief survey of web data extraction tools.
SIGMOD Record, 31, 2002.

[11] D. Lin. Automatic retrieval and clustering of similar words. In Proceedings of ACL/COLING-98, 1998.
[12] I. Mansuri and S. Sarawagi. A system for integrating unstructured data into relational databases. In ICDE, 2006.
[13] J. P. Marques De Sá. Applied Statistics. Springer Verlag, 2003.
[14] A. McCallum and D. Jensen. A note on the unification of information extraction and data mining using conditional-

probability, relational models. In IJCAI, 2003.
[15] Nadeau and P. Turney. A supervised learning approach to acronym identification. In AI, 2005.
[16] K. Nigam and M. Hurst. Towards a robust metric of opinion. In AAAI-EAAT, 2004.
[17] M. Paşca, D. Lin, J. Bigham, A. Lifchits, and A. Jain. Names and similarities on the web: Fact extraction in the

fast lane. In Proceedings of ACL06, July 2006.
[18] M. Paşca and B. Van Durme. Weakly-supervised acquisition of open-domain classes and class attributes from web

documents and query logs. In ACL-HLT, 2008.
[19] P. Pantel, E. Crestan, A. Borkovsky, A.-M. Popescu, and V. Vyas. Web-scale distributional similarity and entity set

expansion. In Proceedings of EMNLP-09, 2009.
[20] P. Pantel and D. Lin. Discovering word senses from text. In SIGKDD, 2002.
[21] E. Riloff and R. Jones. Learning dictionaries for information extraction by multi-level bootstrapping. In Proceedings

of AAAI-99, 1999.
[22] G. Salton and M. J. Mcgill. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York, NY, USA,

1986.
[23] S. Sarawagi and W. Cohen. Semimarkov conditional random fields for information extraction. In 21st International

Conference on Machine Learning (ICML 2004), 2004.
[24] Y. Yan, Y. Matsuo, Z. Yang, and M. Ishizuka. Unsupervised relation extraction by mining wikipedia texts with

support from web corpus. In Proceedings of ACL-09, 2009.

233

