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Abstract 

State of the art set expansion algorithms pro-
duce varying quality expansions for different 
entity types. Even for the highest quality ex-
pansions, errors still occur and manual re-
finements are necessary for most practical 
uses. In this paper, we propose algorithms to 
aide this refinement process, greatly reducing 
the amount of manual labor required. The me-
thods rely on the fact that most expansion er-
rors are systematic, often stemming from the 
fact that some seed elements are ambiguous. 
Using our methods, empirical evidence shows 
that average R-precision over random entity 
sets improves by 26% to 51% when given 
from 5 to 10 manually tagged errors. Both 
proposed refinement models have linear time 
complexity in set size allowing for practical 
online use in set expansion systems. 

1 Introduction 

Sets of named entities are extremely useful in a 
variety of natural language and information re-
trieval tasks. For example, companies such as Ya-
hoo! and Google maintain sets of named entities 
such as cities, products and celebrities to improve 
search engine relevance. 

Manually creating and maintaining large sets of 
named entities is expensive and laborious. In re-
sponse, many automatic and semi-automatic me-
thods of creating sets of named entities have been 
proposed, some are supervised (Zhou and Su, 
2001), unsupervised (Pantel and Lin 2002, Nadeau 
et al. 2006), and others semi-supervised (Kozareva 

et al. 2008). Semi-supervised approaches are often 
used in practice since they allow for targeting spe-
cific entity classes such as European Cities and 
French Impressionist Painters. Methods differ in 
complexity from simple ones using lexico-
syntactic patterns (Hearst 1992) to more compli-
cated techniques based on distributional similarity 
(Paşca 2007a). 

Even for state of the art methods, expansion er-
rors inevitably occur and manual refinements are 
necessary for most practical uses requiring high 
precision (such as for query interpretation at com-
mercial search engines). Looking at expansions 
from state of the art systems such as GoogleSets1 , 
we found systematic errors such as those resulting 
from ambiguous seed instances. For example, con-
sider the following seed instances for the target set 
Roman Gods: 

Minerva, Neptune, Baccus, Juno, 
Apollo 

GoogleSet’s expansion as well others employing 
distributional expansion  techniques consists of a 
mishmash of Roman Gods and celestial bodies, 
originating most likely from the fact that Neptune 
is both a Roman God and a Planet. Below is an 
excerpt of the GoogleSet expansion: 

Mars, Venus, *Moon, Mercury, 
*asteroid, Jupiter, *Earth, 
*comet, *Sonne, *Sun, … 

The inherent semantic similarity between the errors 
can be leveraged to quickly clean up the expan-
sion. For example, given a manually tagged error 
“asteroid”, a distributional similarity thesaurus 

                                                 
1 http://labs.google.com/sets 



such as (Lin 1998)2 can identify comet as similar to 
asteroid and therefore potentially also as an error. 
This method has its limitations since a manually 
tagged error such as Earth would correctly remove 
Moon and Sun, but it would also incorrectly re-
move Mars, Venus and Jupiter since they are also 
similar to Earth3. 

In this paper, we propose two algorithms to im-
prove the precision of automatically expanded enti-
ty sets by using minimal human negative 
judgments. The algorithms leverage the fact that 
set expansion errors are systematically caused by 
ambiguous seed instances which attract incorrect 
instances of an unintended entity type. We use dis-
tributional similarity and sense feature modeling to 
identify such unintended entity types in order to 
quickly clean up errors with minimal manual labor. 
We show empirical evidence that average R-
precision over random entity sets improves by 26% 
to 51% when given from 5 to 10 manually tagged 
errors. Both proposed refinement models have li-
near time complexity in set size allowing for prac-
tical online use in set expansion systems. 

The remainder of this paper is organized as fol-
lows. In the next section we review related work 
and position our contribution within its landscape. 
Section 3 presents our task of dynamically model-
ing the similarity of a set of words and describes 
algorithms for refining sets of named entities. The 
datasets and our evaluation methodology used to 
perform our experiments are presented in Section 4 
and in Section 5 we describe experimental results. 
Finally, we conclude with some discussion and 
future work. 

2 Related Work 

There is a large body of work for automatically 
building sets of named entities using various tech-
niques including supervised, unsupervised and 
semi-supervised methods. Supervised techniques 
use large amounts of training data to detect and 
classify entities into coarse grained classes such as 
People, Organizations, and Places (Bunescu and 
Mooney 2004; Etzioni et al. 2005). On the other 
hand, unsupervised methods require no training 
                                                 
2 See http://demo.patrickpantel.com/ for a demonstration of 
the distributional thesaurus.  
3 In practice, this problem is rare since most terms that are 
similar in one of their senses tend not to be similar in their 
other senses. 

data and rely on approaches such as clustering, 
targeted patterns and co-occurrences to extract sets 
of entities (Pantel and Lin 2002; Downey et al. 
2007). 

Semi-supervised approaches are often used in 
practice since they allow for targeting specific enti-
ty classes. These methods rely on a small set of 
seed examples to extract sets of entities. They ei-
ther are based on distributional approaches or em-
ploy lexico-syntactic patterns to expand a small set 
of seeds to a larger set of candidate expansions. 
Some methods such as (Riloff and Shepherd 1997; 
Riloff and Jones 1999; Banko et al. 2007;Paşca 
2007a)  use lexico-syntactic patterns to expand a 
set of seeds from web text and query logs. Others 
such as (Paşca et al. 2006; Paşca 2007b; Paşca and 
Durme 2008) use distributional approaches. Wang 
and Cohen (2007) use structural cues in semi-
structured text to expand sets of seed elements. In 
all methods however, expansion errors inevitably 
occur. This paper focuses on the task of post 
processing any such system’s expansion output 
using minimal human judgments in order to re-
move expansion errors. 

Using user feedback to improve a system’s per-
formance is a common theme within many infor-
mation retrieval and machine learning tasks. One 
form of user feedback is active learning (Cohn et 
al. 1994), where one or more classifiers are used to 
focus human annotation efforts on the most benefi-
cial test cases. Active learning has been successful-
ly applied to various natural language tasks such as 
parsing (Tang et al. 2001), POS tagging (Dagan 
and Engelson 1995) and providing large amounts 
of annotations for common natural language 
processing tasks such as word sense disambigua-
tion (Banko and Brill 2001). Relevance feedback is 
another popular feedback paradigm commonly 
used in information retrieval (Harman 1992), 
where user feedback (either explicit or implicit) is 
used to refine the search results of an IR system. 
Relevance feedback has been successfully applied 
to many IR applications including content-based 
image retrieval (Zhouand Huang 2003) and web 
search (Vishwa et al. 2005). Within NLP applica-
tions relevance feedback has also been used to 
generate sense tagged examples for WSD tasks 
(Stevenson et al. 2008), and Question Answering 
(Negri 2004). Our methods use relevance feedback 
in the form of negative examples to refine the re-
sults of a set expansion system. 



3 Dynamic Similarity Modeling 

The set expansion algorithms discussed in Section 
2 often produce high quality entity sets, however 
inevitably errors are introduced. Applications re-
quiring high precision sets must invest significant-
ly in editorial efforts to clean up the sets. Although 
companies like Yahoo! and Google can afford to 
routinely support such manual labor, there is a 
large opportunity to reduce the refinement cost 
(i.e., number of required human judgments).  

Recall the set expansion example of Roman 
Gods from Section 1. Key to our approach is the 
hypothesis that most expansion errors result from 
some systematic cause. Manual inspection of ex-
pansions from GoogleSets and distributional set 
expansion techniques revealed that most errors are 
due to the inherent ambiguity of seed terms (such 
as Neptune in our example) and data sparseness 
(such as Sonne in our example, a very rare term). 
The former kind of error is systematic and can be 
leveraged by an automatic method by assuming 
that any entity semantically similar to an identified 
error will also be erroneous. 

In this section, we propose two methods for le-
veraging this hypothesis. In the first method, de-
scribed in Section 3.1, we use a simple 
distributional thesaurus and remove all entities 
which are distributionally similar to manually iden-
tified errors. In the second method, described in 
Section 3.2, we model the semantics of the seeds 
using distributional features and then dynamically 
change the feature space according to the manually 
identified errors and rerank the entities in the set. 
Both methods rely on the following two observa-
tions: 

a) Many expansion errors are systematically 
caused by ambiguous seed examples which 
draw in several incorrect entities of its unin-
tended senses (such as seed Neptune in our 
Roman Gods example which drew in celestial 
bodies such as Earth and Sun); 

b) Entities which are similar in one sense are 
usually not similar in their other senses. For 
example, Apple and Sun are similar in their 
Company sense but their other senses (Fruit 
and Celestial Body) are not similar. Our exam-
ple in Section 1 illustrates a rare counterexam-
ple where Neptune and Mercury are similar in 
both their Planets and Roman Gods senses. 

Task Outline: Our task is to remove errors from 
entity sets by using a minimal amount of manual 
judgments. Incorporating feedback into this 
process can be done in multiple ways. The most 
flexible system would allow a judge to iteratively 
remove as many errors as desired and then have 
the system automatically remove other errors in 
each iteration. Because it is intractable to test arbi-
trary numbers of manually identified errors in each 
iteration, we constrain the judge to identify at most 
one error in each iteration. 

Although this paper focuses solely on removing 
errors in an entity set, it is also possible to improve 
expanded sets by using feedback to add new ele-
ments to the sets. We consider this task out of 
scope for this paper.  

3.1 Similarity Method (SIM) 

Our first method directly models observation a) in 
the previous section. Following Lin (1998), we 
model the similarity between entities using the dis-
tributional hypothesis, which states that similar 
terms tend to occur in similar contexts (Harris 
1985). A semantic model can be obtained by re-
cording the surrounding contexts for each term in a 
large collection of unstructured text. Methods dif-
fer in their definition of a context (e.g., text win-
dow or syntactic relations), or a means to weigh 
contexts (e.g., frequency, tf-idf, pointwise mutual 
information), or ultimately in measuring the simi-
larity between two context vectors (e.g., using Euc-
lidean distance, Cosine, Dice). In this paper, we 
use a text window of size 1, we weigh our contexts 
using pointwise mutual information, and we use 
the cosine score to compute the similarity between 
context vectors (i.e., terms). Section 5.1 describes 
our source corpus and extraction details. Compu-
ting the full similarity matrix for many terms over 
a very large corpus is computationally intensive. 
Our specific implementation follows the one pre-
sented in (Bayardo et al. 2007). 

The similarity matrix computed above is then 
directly used to refine entity sets. Given a manual-
ly identified error at each iteration, we automatical-
ly remove each entity in the set that is found to be 
semantically similar to the error. The similarity 
threshold was determined by manual inspection 
and is reported in Section 5.1. 

Due to observation b) in the previous section, 
we expect that this method will perform poorly on 



entity sets such as the one presented in our exam-
ple of Section 1 where the manual removal of 
Earth would likely remove correct entities such as 
Mars, Venus and Jupiter. The method presented in 
the next section attempts to alleviate this problem. 

3.2 Feature Modification Method (FMM) 

Under the distributional hypothesis, the semantics 
of a term are captured by the contexts in which it 
occurs. The Feature Modification Method (FMM), 
in short, attempts to automatically discover the 
incorrect contexts of the unintended senses of seed 
elements and then filters out expanded terms 
whose contexts do not overlap with the other con-
texts of the seed elements. 

Consider the set of seed terms S and an errone-
ous expanded instance e. In the SIM method of 
Section 3.1 all set elements that have a feature vec-
tor (i.e., context vector) similar to e are removed. 
The Feature Modification Method (FMM) instead 
tries to identify the subset of features of the error e 
which represent the unintended sense of the seed 
terms S. For example, let S = {Minerva, Neptune, 
Baccus, Juno, Apollo}. Looking at the contexts of 
these words in a large corpus, we construct a cen-
troid context vector for S by taking a weighted av-
erage of the contexts of the seeds in S. In 
Wikipedia articles we see contexts (i.e., features) 
such as4: 

attack, kill, *planet, destroy, 
Goddess, *observe, statue, *launch, 
Rome, *orbit, … 

Given an erroneous expansion such as e = Earth, 
we postulate that removing the intersecting fea-
tures from Earth’s feature vector and the above 
feature vector will remove the unintended Planet 
sense of the seed set caused by the seed element 
Neptune. The intersecting features that are re-
moved are bolded in the above feature vector for S. 
The similarity between this modified feature vector 
for S and all entities in the expansion set can be 
recomputed as described in Section 3.1. Entities 
with a low similarity score are removed from the 
expanded set since they are assumed to be part of 
the unintended semantic class (Planet in this ex-
ample). 

Unlike the SIM method from Section 3.1, this 
method is more stable with respect to observation 
                                                 
4 The full feature vector for these and all other terms in Wiki-
pedia can be found at http://demo.patrickpantel.com/.. 

b) in Section 3. We showed that SIM would incor-
rectly remove expansions such as Mars, Venus and 
Jupiter given the erroneous expansion Earth. The 
FMM method would instead remove the Planet 
features from the seed feature vectors and the re-
maining features would still overlap with Mars, 
Venus and Jupiter’s Roman God sense. 

Efficiency: FMM requires online similarity com-
putations between centroid vectors and all ele-
ments of the expanded set. For large corpora such 
as Wikipedia articles or the Web, feature vectors 
are large and storing them in memory and perform-
ing similarity computations repeatedly for each 
editorial judgment is computationally intensive. 
For example, the size of the feature vector for a 
single word extracted from Wikipedia can be in the 
order of a few gigabytes. Storing the feature vec-
tors for all candidate expansions and the seed set is 
inefficient and too slow for an interactive system. 
The next section proposes a solution that makes 
this computation very fast, requires little memory, 
and produces near perfect approximations of the 
similarity scores. 

3.3 Approximating Cosine Similarity 

There are engineering optimizations that are avail-
able that allow us to perform a near perfect approx-
imation of the similarity computation from the 
previous section. The proposed method requires us 
to only store the shared features between the cen-
troid and the words rather than the complete fea-
ture vectors, thus reducing our space requirements 
dramatically. Also, FMM requires us to repeatedly 
calculate the cosine similarity between a modified 
centroid feature vector and each candidate expan-
sion at each iteration. Without the full context vec-
tors of all candidate expansions, computing the 
exact cosine similarity is impossible. Given, how-
ever, the original cosine scores between the seed 
elements and the candidate expansions before the 
first refinement iteration as well as the shared fea-
tures, we can approximate with very high accuracy 
the updated cosine score between the modified 
centroid and each candidate expansion. Our me-
thod relies on the fact that features (i.e., contexts) 
are only ever removed from the original centroid – 
no new features are ever added. 

Let μ be the original centroid representing the 
seed instances. Given an expansion error e, FMM 
creates a modified centroid by removing all fea-



tures intersecting between e and μ. Let μ' be this 
modified centroid. FMM requires us to compute 
the similarity between μ' and all candidate expan-
sions x as: 

cos x, ′ μ ( )=
xi ′ μ i∑

x ⋅ ′ μ 
 

where  i iterates over the feature space. 
In our efficient setting, the only element that we 

do not have for calculating the exact cosine simi-
larity is the norm of x, x . Given that we have the 
original cosine similarity score, cos(x, μ) and that 
we have the shared features between the original 
centroid μ and the candidate expansion x we can 
calculate x  as: 

x =
xiμi∑

μ ⋅ cos x,μ( )
 

Combining the two equations, have: 

cos x, ′ μ ( )= cos x,μ( )⋅
xi ′ μ i∑
xiμi∑

⋅
μ
′ μ 

 

In the above equation, the modified cosine score 
can be considered as an update to the original co-
sine score, where the update depends only on the 
shared features and the original centroid. The 
above update equation can be used to recalculate 
the similarity scores without resorting to an expen-
sive computation involving complete feature vec-
tors. 

Storing the original centroid is expensive and 
can be approximated instead from only the shared 
features between the centroid and all instances in 
the expanded set. We empirically tested this ap-
proximation by comparing the cosine scores be-
tween the candidate expansions and both the true 
centroid and the approximated centroid. The aver-
age error in cosine score was 9.5E-04 ± 7.83E-05 
(95% confidence interval). 

4 Datasets and Baseline Algorithm 

We evaluate our algorithms against manually 
scraped gold standard sets, which were extracted 
from Wikipedia to represent a random collection of 
concepts. Section 4.1 discusses the gold standard 
sets and the criteria behind their selection. To 
present a statistically significant view of our results 
we generated a set of trials from gold standard sets 

to use as seeds for our seed set expansion algo-
rithm. Also, in section 4.2 we discuss how we can 
simulate editorial feedback using our gold standard 
sets. 

4.1 Gold Standard Entity Sets 

The gold standard sets form an essential part of our 
evaluation. These sets were chosen to represent a 
single concept such as Countries and Archbishops 
of Canterbury. These sets were selected from the 
List of pages from Wikipedia5. We randomly 
sorted the list of every noun occurring in Wikipe-
dia. Then, for each noun we verified whether or 
not it existed in a Wikipedia list, and if so we ex-
tracted this list – up to a maximum of 50 lists. If a 
noun belonged to multiple lists, the authors chose 
the list that seemed most appropriate. Although 
this does not generate a perfect random sample, 
diversity is ensured by the random selection of 
nouns and relevancy is ensured by the author adju-
dication. 

Lists were then scraped from the Wikipedia 
website and they went through a manual cleanup 
process which included merging variants. . The 50 
sets contain on average 208 elements (with a min-
imum of 11 and a maximum of 1116 elements) for 
a total of 10,377 elements. The final gold standard 
lists contain 50 sets including classical pianists, 
Spanish provinces, Texas counties, male tennis 
players, first ladies, cocktails, bottled water 
brands, and Archbishops of Canterbury6. 

4.2 Generation of Experimental Trials 

To provide a statistically significant view of the 
performance of our algorithm, we created more 
than 1000 trials as follows. For each of the gold 
standard seed sets, we created 30 random sortings. 
These 30 random sortings were then used to gener-
ate trial seed sets with a maximum size of 20 
seeds. 

4.3 Simulating User Feedback and Baseline 
Algorithm 

User feedback forms an integral part of our algo-
rithm. We used the gold standard sets to judge the 
                                                 
5 In this paper, extractions from Wikipedia are taken from a 
snapshot of the resource in December 2007. 
6 The gold standard is available for download at 
http://www.patrickpantel.com/cgi-bin/Web/Tools/getfile.pl? 
type=data&id=sse-gold/wikipedia.20071218.goldsets.tgz 



candidate expansions. The judged expansions were 
used to simulate user feedback by marking those 
candidate expansions that were incorrect. The first 
candidate expansion that was marked incorrect in 
each editorial iteration was used as the editor’s 
negative example and was given to the system as 
an error. 

In the next section, we report R-precision gains 
at each iteration in the editorial process for our two 
methods described in Section 3. Our baseline me-
thod simply measures the gains obtained by re-
moving the first incorrect entry in a candidate 
expansion set at each iteration. This simulates the 
process of manually cleaning a set by removing 
one error at a time. 

5 Experimental Results 

5.1 Experimental Setup 

Wikipedia5 served as the source corpus for our al-
gorithms described in Sections 3.1 and 3.2. All 
articles were POS-tagged using (Brill 1995) and 
later chunked using a variant of (Abney 1991). 
Corpus statistics from this processed text were col-
lected to build the similarity matrix for the SIM 
method (Section 3.1) and to extract the features 
required for the FMM method (Section 3.2). In 
both cases corpus statistics were extracted over the 
semi-syntactic contexts (chunks) to approximate  
term meanings. The minimum similarity thresholds 
were experimentally set to 0.15 and 0.11 for the 
SIM and FMM algorithms respectively. 

Each experimental trial described in Section 
4.2, which consists of a set of seed instances of one 
of our 50 random semantic classes, was expanded 
using a variant of the distributional set expansion 
algorithm from Sarmento et al. (2007). The expan-
sions were judged against the gold standard and 
each candidate expansion was marked as either 
correct or incorrect. This set of expanded and 
judged candidate files were used as inputs to the 
algorithms described in Sections 3.1 and 3.2. 
Choosing the first candidate expansion that was 
judged as incorrect simulated our user feedback. 
This process was repeated for each iteration of the 
algorithm and results are reported for 10 iterations. 

The outputs of our algorithms were again 
judged against the gold standard lists and the per-
formance was measured in terms of precision gains 
over the baseline at various ranks. Precision gain 

for an algorithm over a baseline is the percentage 
increase in precision for the same values of para-
meters of the algorithm over the baseline. Also, as 
the size of our gold standard lists vary, we report 
another commonly used statistic, R-precision. R-
precision for any set is the precision at the size of 
the gold standard set. For example, if a gold stan-
dard set contains 20 elements, then R-precision for 
any set expansion is measured as the precision at 
rank 20. The average R-precision over each set is 
then reported. 

5.2 Quantitative Analysis 

Table 1 lists the performance of our baseline algo-
rithm (Section 4.3) and our proposed methods SIM 
and FMM (Sections 3.1 and 3.2) in terms of their 
R-precision with 95% confidence bounds over 10 
iterations of each algorithm. 

The FMM of Section 3.2 is the best performing 
method in terms of R-precision reaching a maxi-
mum value of 0.322 after the 10th iteration. For 
small numbers of iterations, however, the SIM me-
thod outperforms FMM since it is bolder in its re-
finements by removing all elements similar to the 
tagged error. Inspection of FMM results showed 
that bad instances get ranked lower in early itera-
tions but it is only after 4 or 5 iterations that they 
get pushed passed the similarity threshold (ac-
counting for the low marginal increase in precision 
gain for FMM in the first 4 to 5 iterations). 

FMM outperforms the SIM method by an aver-
age of 4% increase in performance (13% im-
provement after 10 iterations). However both the 
FMM and the SIM method are able to outperform 

Table 1. R-precision of the three methods with 95% confi-
dence bounds. 

ITERATION BASELINE SIM FMM 

1 0.219±0.012 0.234±0.013 0.220±0.015 

2 0.223±0.013 0.242±0.014 0.227±0.017 

3 0.227±0.013 0.251±0.015 0.235±0.019 

4 0.232±0.013 0.26±0.016 0.252±0.021 

5 0.235±0.014 0.266±0.017 0.267±0.022 

6 0.236±0.014 0.269±0.017 0.282±0.023 

7 0.238±0.014 0.273±0.018 0.294±0.023 

8 0.24±0.014 0.28±0.018 0.303±0.024 

9 0.242±0.014 0.285±0.018 0.315±0.025 

10 0.243±0.014 0.286±0.018 0.322±0.025 



the baseline method. Using the FMM method one 
would achieve an average of 17% improvement in 
R-precision over manually cleaning up the set 
(32.5% improvement after 10 iterations). Using the 
SIM method one would achieve an average of 13% 
improvement in R-precision over manually clean-
ing up the set (17.7% improvement after 10 itera-
tions). 

5.3 Intrinsic Analysis of the SIM Algorithm 

Figure 1 shows the precision gain of the similarity 
matrix based algorithm over the baseline algo-
rithm. The results are shown for precision at ranks 
1, 2, 5, 10, 25, 50 and 100, as well as for R-
precision. The results are also shown for the first 
10 iterations of the algorithm.  

SIM outperforms the baseline algorithm for all 
ranks and increases in gain throughout the 10 itera-
tions. As the number of iterations increases the 
change in precision gain levels off. This behavior 
can be attributed to the fact that we start removing 
errors from top to bottom and in each iteration the 
rank of the error candidate provided to the algo-
rithm is lower than in the previous iteration. This 
results in errors which are not similar to any other 
candidate expansions. These are random errors and 
the discriminative capacity of this method reduces 
severely. 

Figure 1 also shows that the precision gain of 
the similarity matrix algorithm over the baseline 
algorithm is higher at ranks 1, 2 and 5.  Also, the 
performance increase drops at ranks 50 and 100. 
This is because low ranks contain candidate expan-

sions that are random errors introduced due to data 
sparsity. Such unsystematic errors are not detecta-
ble by the SIM method. 

5.4 Intrinsic Analysis of the FMM Algorithm 

The feature modification method of Section 3.2 
shows similar behavior to the SIM method, how-
ever as Figure 2 shows, it outperforms SIM me-
thod in terms of precision gain for all values of 
ranks tested. This is because the FMM method is 
able to achieve fine-grained control over what it 
removes and what it doesn’t, as described in Sec-
tion 5.2. 

Another interesting aspect of FMM is illu-
strated in the R-precision curve. There is a sudden 
jump in precision gain after the fifth iteration of 
the algorithm. In the first iterations only few errors 
are pushed beneath the similarity threshold as cen-
troid features intersecting with tagged errors are 
slowly removed. As the feature vector for the cen-
troid gets smaller and smaller, remaining features 
look more and more unambiguous to the target 
entity type and erroneous example have less 
chance of overlapping with the centroid causing 
them to be pushed pass the conservative similarity 
threshold. Different conservative thresholds 
yielded similar curves. High thresholds yield bad 
performance since all but the only very prototypi-
cal set instances are removed as errors. 

The R-precision measure indirectly models re-
call as a function of the target coverage of each set. 
We also directly measured recall at various ranks 

 
Figure 1. Precision gain over baseline algorithm for SIM 
method. 

Figure 2. Precision gain over baseline algorithm for FMM 
method.



and FMM outperformed SIM at all ranks and itera-
tions. 

5.5 Discussion 

In this paper we proposed two techniques which 
use user feedback to remove systematic errors in 
set expansion systems caused by ambiguous seed 
instances. Inspection of expansion errors yielded 
other types of errors. 

First, model errors are introduced in candidate 
expansion sets by noise from various pre-
processing steps involved in generating the expan-
sions. Such errors cause incorrect contexts (or fea-
tures) to be extracted for seed instances and 
ultimately can cause erroneous expansions to be 
produced. These errors do not seem to be systemat-
ic and are hence not discoverable by our proposed 
method. 

Other errors are due to data sparsity. As the fea-
ture space can be very large, the difference in simi-
larity between a correct candidate expansion and 
an incorrect expansion can be very small for sparse 
entities. Previous approaches have suggested re-
moving candidate expansions for which too few 
statistics can be extracted, however at the great 
cost of recall (and lower R-precision). 

6 Conclusion 

In this paper we presented two algorithms for im-
proving the precision of automatically expanded 
entity sets by using minimal human negative 
judgments. We showed that systematic errors 
which arise from the semantic ambiguity inherent 
in seed instances can be leveraged to automatically 
refine entity sets. We proposed two techniques: 
SIM which boldly removes instances that are dis-
tributionally similar to errors, and FMM which 
more conservatively removes features from the 
seed set representing its unintended (ambiguous) 
concept in order to rank lower potential errors. 

We showed empirical evidence that average R-
precision over random entity sets improves by 26% 
to 51% when given from 5 to 10 manually tagged 
errors. These results were reported by testing the 
refinement algorithms on a set of 50 randomly 
chosen entity sets expanded using a state of the art 
expansion algorithm. Given very small amounts of 
manual judgments, the SIM method outperformed 
FMM (up to 4 manual judgments). FMM outper-
formed the SIM method given more than 6 manual 

judgments. Both proposed refinement models have 
linear time complexity in set size allowing for 
practical online use in set expansion systems. 

This paper only addresses techniques for re-
moving erroneous entities from expanded entity 
sets. A complimentary way to improve perfor-
mance would be to investigate the addition of rele-
vant candidate expansions that are not already in 
the initial expansion. We are currently investigat-
ing extensions to FMM that can efficiently add 
new candidate expansions to the set by computing 
the similarity between modified centroids and all 
terms occurring in a large body of text. 

We are also investigating ways to use the find-
ings of this work to a priori remove ambiguous 
seed instances (or their ambiguous contexts) before 
running the initial expansion algorithm. It is our 
hope that most of the errors identified in this work 
could be automatically discovered without any 
manual judgments. 
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