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ABSTRACT 

In this paper, we present a semi-supervised learning method for 
web page classification, leveraging click logs to augment training 
data by propagating class labels to unlabeled similar documents. 
Current state-of-the-art classifiers are supervised and require large 
amounts of manually labeled data. We hypothesize that unlabeled 
documents similar to our positive and negative labeled documents 
tend to be clicked through by the same user queries. Our proposed 
method leverages this hypothesis and augments our training set by 
modeling the similarity between documents in a click graph. We 
experiment with three different web page classifiers and show 
empirical evidence that our proposed approach outperforms state-
of-the-art methods and reduces the amount of human effort to 
label training data.  

Categories and Subject Descriptors 

H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: 
Information Search and Retrieval – Relevance feedback, Selection 

process 

General Terms 

Algorithms, Measurement, Performance, Design, Experimentation 

Keywords 

Web page classification, click-through data, page similarity, seed 
set expansion. 

1. INTRODUCTION 
Web page classification is one of the basic tasks for understanding 
a web page. It categorizes a web page into various classes, such as 
news, blog, shopping, adult and review, based on the contents of 
the page and link information such as in-link (i.e., which pages 
point to this page) and out-link (i.e., urls to which this page 
points). Most page classification systems follow supervised 
learning methods, which rely heavily on large amounts of 
manually annotated data. The obvious downside of this approach 

is the large labor cost of annotating the data.  

Web page classification is different from typical text 
classification. Unlike other texts, web pages contain not only 
textual content, but also html tags, meta-data, images, and in/out-
link urls. Web page classifiers which use this additional 
information outperform classifiers which rely solely on textual 
features. On the other hand, the textual content of web pages 
contains not only primary content, but also peripheral content 
such as advertisement, bread crumbs, and navigation information. 
Peripheral content tends to confuse a classifier and discerning 
between it and primary content is challenging. A common way to 
address this problem is to have very large labeled training data 
which mask the features of peripheral content. 

A hypothesis of this paper is that search engine click logs contain 
information which links web pages of similar classes. Click data 
contains information such as which queries search engine users 
issue to retrieve certain pages and how many times those pages 
are actually clicked from those queries. Although it is well known 
that click data suffers from position bias (Craswell, 2008) (e.g., 
users are likely to click urls presented in first position), the 
aggregated click data across many users over time provides 
valuable information. Since click data is relatively inexpensive to 
obtain, it has been applied to web applications such as relevance 
ranking and query expansion.  

In this paper, we apply click data in web page classification to 
augment training data by propagating class labels to unlabeled 
similar documents. Although click data can also be utilized as 
features of a page classification model, our focus is to expand 
training data automatically by finding similar pages from user 
click information. We hypothesize that unlabeled documents 
similar to our positive and negative labeled documents will tend 
to be clicked on by the same user queries. We then augment our 
training set (i.e., seed set) by modeling the similarity between 
documents in a click graph. Similarity between two pages is 
computed based on the number of clicks and the queries used to 
click two pages1. An alternative method to identify similar pages 
would be investigating page content such as text, in/out-link and 
title. However, in order to obtain such content it requires crawling 
actual pages and store the content of millions of document. Our 
goal is to identify similar pages without crawling contents of the 
web.  

                                                                 
1 Other click data information such as dwell time (i.e., how long 

users spent on a page) is not considered in our work. 
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We propose two models for seed set augmentation: click data 

model (CDM) and query constraint model (QC model). In both 
models, each url (i.e., page) is represented as a vector of queries 
that users issued and clicked through to the page. The page 
similarity between two pages is computed using the cosine 
similarity between the two vectors. In CDM, we augment seed sets 
based on the cosine similarity scores. The intuition is that a page 
with high similarity with the seed set should have the same class 
label as the seed set. In the QC model, we consider query patterns 
as well as similarity scores. It augments the CDM model by 
enforcing that certain query terms are shared by the page and the 
seed set (e.g., for a review classifier, we would enforce that a page 
shares with the seed set a query containing words such as review). 

We also propose an active learning method leveraging click data, 
which attempts to reduce the number of labeled data required to 
build a model of similar performance by intelligently (i.e., 
actively) collecting training data. In our approach, we first label 
positive and negative seed sets then expand them using the 
proposed expansions from the CDM and QC models. Then, we 
manually label the augmented sets and expand them again 
iteratively. A model trained with data sets collected by this 
approach outperforms a model built with three times more labeled 
data. 

We investigate our hypothesis by applying the approach in three 
different web page classification tasks. Experimental results show 
promising result and support our claim that we can use much less 
human annotation effort by leveraging click data. 

This paper is organized as following: Section 2 summarizes 
previous work related to our research and Section 3 describes our 
proposed approach of calculating page similarity using click data. 
Section 4 proposes two algorithms for automatically expanding 
seed sets of labeled urls, using the similarity graph built in Section 
3, and proposes our active learning algorithm for obtaining 
labeled pages. Section 5 reports experimental results of our 
methods with various classification problems including adult, 
review, and howto. Finally, Section 6 discusses practical issues 
and future work and Section 7 concludes this paper. 

2.  RELATED WORK 
This paper is closely related to web page classification. Since the 
main different idea of this work from previous page classification 
work is leveraging click through data, this section also 
summarizes previous research on systems and algorithms using 
clickthrough data. 

Text classification is a task of assigning a class label from pre-
defined classes to a given document. Binary classification has two 
pre-defined classes whereas multi-class classification has more 
than two classes. Text classification tasks typically use bag-of-
word approaches (Joachisms, 2001). However, (Chakrabarti et al., 
1998) discuss that hypertext categorization is a lot more difficult 
than text classification. They present that a text classification 
system without considering link structure of hypertexts performs 
poorly on hypertext classification task. (Yang et al., 2002) also 
address the challenge of hypertext categorization and present 
methodologies using meta-data and hyperlink features of 
hypertext.  

User click data has been applied in many web applications such as 
web search ranking systems and query classification. (Joachims, 

2002) introduced the use of click data for search engine 
optimization. (Radlinski et al, 2008) investigate the co-relation 
between click data and search quality and (Dou et al., 2008) 
leverage click data for a search ranking system by extracting pair-
wise relevance preferences. (Chapelle and Zhang, 2009) discuss 
the search-engine position bias problem of click data (i.e., top 
ranked result will get more user clicks) and attack this problem by 
proposing a click model with dynamic Bayesian network.  

Click data is also actively applied to query log mining. (Li et al., 
2008) build a bipartite-graph of click data and use it for query 
intent classification. (Antonellis et al., 2008) also use bipartite-
graph representation of click logs and apply on query rewriting 
applications.  

3. CALCULATING PAGE SIMILARITY 

USING CLICK DATA 
In this section, we describe how the similarity between two pages 
can be measured using click data. A common way of measuring 
page similarity between two pages without click information 
would be comparing the contents (e.g., text, title, and in/out-link) 
of the two pages. However, in order to obtain such content, it 
requires crawling actual pages and store the content of documents 
on the web. Compared to our approach which doesn’t require the 
acquisition of the actual page of a url, the content-comparison 
approach takes not only more storage but also takes time for 
crawling.  

In our work, we do not look at the contents of pages for similarity 
computation. Instead, we hypothesize that unlabeled documents 
similar to positive and negative labeled documents will tend to be 
clicked on by the same user queries. Section 3.1 describes the 
click data that we used in this study and Section 3.2 explains our 
proposed page similarity computation using the click data.   

3.1 Click Data 
We use one month of click data collected during December 2008 
from Yahoo! search engine. In order to protect the users’ privacy, 
we removed any identifiable user information (e.g., which user 
clicked on which page with which query) from the click data 
representation. For each query, only the top 10 urls are considered 
for our experiments. Urls with less than 10 clicks are excluded 
from our experiment. This results in a total of 1.1 million urls. 
Session information such as what is the next url a user clicked 
after clicking a particular url or how long users stay in a particular 
url on average (i.e., dwell time) is not used for our models. 

3.2 Building a Page Similarity Graph Using 

Click Data 
The hypothesis that we use to compute similarities between pages 
is: “Two pages that tend to be clicked by the same user queries 

tend to be topically similar”. For example, if a page A is clicked 
by a set of queries like “how to tie a tie”, “how to tie a neck tie 
knots” and “tying a tie” and another page B is also clicked by the 
same set of queries, we can assume that the contents of page A 
and B are topically similar (i.e., the two fall into the same topical 
class). We consider a page as an object and queries that users 
issue to click this page as features. Each page is represented as a 
vector whose elements (i.e., features) are queries and whose 
values are the Pointwise Mutual Information (PMI) statistic. The 
following equation shows a vector of a page pi. 
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where {q1, q2, q3,…, qni} are queries that were issued and resulted 
in a click to page pi, {v1, v2, v3,…, vni} are PMI scores between pi 
and q, and ni is the total number of unique queries that users 
issued and clicked through to pi. The PMI between a page p and a 
query q is calculated as follows: 
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where P(p,q) is the joint probability that a page p is clicked with 
query q, P(p) is the probability that p is clicked through from any 
query and P(q) is the probability of a user issuing and clicking 
through a query q. When p and q are totally independent (i.e., 
P(p,q) = P(p)P(q)), PMI becomes 0. 

A well-known problem of PMI is that it is biased towards 
infrequent events. Consider the case where p and q are statistically 
dependent (i.e., they have maximum association). Then P(p,q) = 
P(p) = P(q). Hence PMI(p,q) becomes log (1/P(p)) and PMI 
increases as the probability of p decreases. Several discounting 
factors have been proposed to alleviate this problem. An example 
follows (Pantel & Lin, 2002a): 
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where cpq is the frequency of clickthroughs on p from q, n is the 
number queries that had a clickthrough to p, and m is the number 
of pages to which query q clicked through. 

With this vector representation of each page, we compute the 
similarity between two pages using the cosine similarity of their 
respective feature vectors2. Table 1 shows 3 example pages. Page 
P1 is clicked by 3 queries: “how to tie”, “tying a tie” and “tie”. 
The PMI value between P1 and the query “how to tie” is 2.5. 

The cosine similarity between p1 and p2 (i.e., sim(p1,p2)) is 
greater than sim(p1,p3) and sim(p2,p3) because p1 and p2 share 
more common queries than with p3. 

A page, represented as a node, in the similarity graph is identified 
by its url string. In order to avoid treating two same urls 
differently due to a small variation in the url, we normalize all the 
urls by removing “http://” at the beginning of the url and a slash 
“/” at the end of a url. For example the following four urls are 
treated as the same even if there is a small variation: 
“http://www.acm.org”, “www.acm.org”, “www.acm.org/” and 
“http://www.acm.org/”. 

Section 4 explains how we utilize the similarity graph for semi-
supervised learning for page classification problems. 

                                                                 
2  Other similarity measures can be also applied. However, 

investigating which similarity measures work best on our task is 
not the focus of this paper. It is commonly said in IR that, 
properly normalized, the difference in retrieval performance 
using different measures is insignificant (van Rijsbergen, 1979). 

4. FINDING SIMILAR PAGES GIVEN 

SEED SETS 
We now discuss how we augment training data for a page 
classifier given sets of positive and negative labeled data and a 
page similarity graph built by the algorithm leveraging click data 
described in Section 3. We call a set of same labeled data a “seed 

set” in the rest of this paper. A page in a seed set has a class label 
(e.g., adult or non-adult in the adult page classifier and review or 
non-review in review page classifier) judged by humans3. A page 
also has its contents and a url. However, for our approach of 
finding similar pages, we only use the url, not the contents of the 
page. In the following sections, we propose two algorithms for 
seed set expansion. The first considers the similarity score of a 
page and pages in the seed set whereas the second refines the first 
by additionally considering query validation patterns. 

4.1 Expanding Seed Pages with Similarity 

Score 
We can state the problem of expanding the seed set as follows:  

Given two seed sets, one for positive instances (Spos) and the other 
for negative instances (Sneg), and a click graph G ={( v11, v12, w1), 
( v21, v22, w2), …, ( vk1, vk2, wk)},  find two expanded sets Exppos 
and Expneg of nodes similar to Spos and Sneg, respectively, where vij 
is a page and wk is the similarity score between vk1 and vk2. Table 
2 shows the details of the proposed algorithm. 

The algorithm is divided into two phases: updating score phase 

and filtering phase. In the updating score phase, with a positive 
seed set, the algorithm reads all the edges (vi1, vi2, wi) in the given 
graph and checks if the similarity score wi is greater than 
threshold T1. If it is greater than T1 and one of the two urls 
belongs to the seed Spos set but the other doesn’t, add the other to 
the expanded set Epos. With the negative seed set, updating score 
phase is similar except it multiplies by -1 before adding the 
weight to the score. In this way, a url that has more similarity 
score with urls in Spos gets more positive value whereas a url that 
has more similarity score with urls in Sneg gets more negative 
value.  

After finishing the updating score phase, the algorithm goes 
through all the urls and their scores in the expanded set to 
eliminate urls with low scores. In the filtering phase, if a url in the 
expanded set has a lower absolute score value compared with a 
threshold T2, it gets eliminated from the set. After the filtering 

                                                                 
3 The main focus of classification problem we are considering in 

this paper is binary classification. 

Table 1. Simplified examples of page vectors whose 

features are queries and feature values are Point-wise 

Mutual Information (PMI). 

Page Vector 

P1 (“how to tie”: 2.5, “tying a tie”: 1.3, “tie”: 0.7 ) 

P2 (“how to tie”: 1.9, “tying a tie”: 2.3,  
“how do you tie”: 0.9, “tie”: 0.6) 

P3 ( “designer tie”: 2.4, “tie” 1.2) 

 



phase, the algorithm only keeps urls whose aggregated similarity 
score in absolute value is higher than T2. In this paper, the two 
thresholds T1 and T2 are empirically set by performing a grid 
search of various threshold values on a development dataset (i.e., 
0.1<T1<0.6 and 0.6<T2<1.2).  

The proposed algorithm considers both the individual similarity 
score of a node (i.e., by threshold T1) and the aggregated 
similarity score (i.e., by threshold T2). If a url has a strong link 
with one of the members in seed set Si, it gets registered to the 
expanded set Ei. The final membership is determined by the 
aggregated similarity score of a node with all the nodes from the 
seed set who have similarity links with this node.  

4.2 Expanding Seed Pages with Added Query 

Constraints 
We propose another seed set expansion algorithm which considers 
query patterns on top of the similarity scores described in the 
previous section. The motivation of this algorithm is that queries 
that users type in for certain classes of pages, such as reviews, 
have common terms like “review” that strongly indicate the intent 
of the query as well as the class of the clicked pages. This means 
that if two review pages are similar, not only they have high 
similarity score but also their common queries may have a term 
like “review”. Although, these patterns might be captured by 
algorithm in 4.1, our initial manual investigation on the result of 
expanded pages by algorithm in 4.1 shows that there are some 
noise that need to be filtered out.    

For query constraint (QC) algorithm, we use the algorithm 
described in Table 2 with an additional module that checks 
whether the common queries between two nodes have certain term 
patterns4. The input for this algorithm is the following: 

(1) Two seed sets S1 and S2 

(2) a graph G={( v11, v12, w1, Q1 ), ( v21, v22, w2, Q2), …, ( vk1, 
vk2, wk, Qk)} where Qi is a set of queries that used to click both 
pages vi1and vi2. 

(3) Query patterns R={r1, r2,…rj} where ri can be any lexical 
pattern such as a unigram and a bigram 

Section 5 reports experimental results of both algorithms 
described in Section 4.1 and Section 4.2. 

4.3 Active Learning 
One of the main goals of this work is to investigate whether 
leveraging click data for Web page classification can reduce the 
total amount of human judgments and reach comparable levels of 
performance. We now propose an efficient way of selecting 
unlabeled data to manually annotate in an active learning 
framework. By carefully selecting which pages are annotated by a 
human judge, we can greatly reduce the number of judgments 
required, compared to if they were given randomly selected pages. 

We first use two sets of seed urls (i.e., Spos  and Sneg) labeled by 
humans and automatically identify similar pages from the 
similarity graph built by click data. Then we collect two expanded 
sets of urls, positive and negative, for which we have highest 
confidence (144 urls). The urls are labeled by human judges and 
are added to the original seed sets. Then we expand the seed sets 
again with the same procedure. Section 5.3 shows that this 
method reaches the same performance level with significantly less 
manually labeled data. 

We investigate whether we can reduce the amount of human 
annotation effort by leveraging the click data. The reason we call 
this “active learning” is that we build an expansion model with 
labeled training data and use it to select next round of training 
data. Instead of randomly collecting more data to label, we 
actively select data from positive and negative candidates 
suggested by a model (described in 4.1). 

5. Experimental Results 
In this section we present an extensive evaluation of our label-
propagation algorithm over the following three classification 
tasks: 

• how-to: pages that describe procedural knowledge on 

how to accomplish certain tasks such as fixing computer 
problems, painting a house, and cleaning leather. 

• adult: pages that contain explicit vulgar, violent or 

sexual content; and 

• review: pages that display either user or editorial 

reviews of products or services. 

Our experiments focus on two primary questions: 1) the precision 
of our label propagation algorithms presented in Section 4; and 2) 

                                                                 
4 The query patterns are manually collected by looking at shared 

queries between pages in positive classes of a separate 
development set.   

Table 2. Seed set expansion algorithm 

Input: Two seed sets S1 and S2 and a graph G={( v11, v12, 
w1), ( v21, v22, w2), …, ( vk1, vk2, wk)} 

Two threshold parameters: T1 and T2 

Initialize: E1 =(Empty), E2 =(Empty) 

Output: Two sets of similar urls E1 and E2 

(Updating score phase) 

c: a temporary variable 

for i=1 to k do 

   read a node (vi1, vi2, wi) in the graph  

   if wk >= T1 

      if vi1 is a member of S1 and vi2 is not, set c vi2  

      else if vi2 is a member of S1 and vi1 is not, set c vi1  

      if c is not a member of E1, 

         add c to E1 and set score(c)=0 

      score(c) = score(c) + wi 

      if vi1 is a member of S2 and vi2 is not, set c vi2  

      else if vi2 is a member of S2 and vi1 is not, set c vi1  

      if c is not a member of E2 

         add c to E2 and set score(c)=0 

      score(c) = score(c) - wi 

end for 

(Filtering phase) 

For each c in E1 

   If score(c) < T2, remove c from E1 

For each c in E2 

   If score(c) >-T2, remove c from E2 

 



the effect of our expanded training sets on both classification 
accuracy and saved judgments. We answer the first question by 
manually evaluating the labels assigned to a random sample of 
instances expanded by our methods, and we answer the second 
question by comparing the classification performance of a model 
trained with only manually labeled data with models trained with 
our added expanded data (using both our passive and active 
algorithms from Section 4). 

We now describe our experimental setup and our experimental 
results. 

5.1 Experimental Setup 

5.1.1 Data Sets 
The training data for each of our three classification tasks consists 
of 10,000 manually labeled positive and negative examples by a 
large team of professional editors.  

The data was collected in two stages. First, we collect a data pool 
by selecting a large number of random queries from our search 
logs, fully anonymized, and then obtain the top-20 search results 
returned by Yahoo! search engine. These urls were then manually 
labeled by our editors. In order to increase the number of positive 
examples, in the second stage, we build a second data pool by 
manually collecting queries that are likely to surface positive 
pages, and then obtain and manually label the top-20 search 
results. For example, for our review classifier, we can use 

queries such as “digital camera reviews” or “baby swing reviews”, 
and for our how-to classifier, we can use “how to clean uggs” or 

“best way to loose weight”. The reason we combine these two 
approaches is that the data pool from the first approach is likely to 
contain too few positive examples and this will cause our training 
data to be skewed too much towards negative examples. Again, 
once the training data is collected, trained professional editors 
review each url and judge whether the page is positive or 
negative. A subset of labeled data is annotated by multiple human 
judges and is used for checking data quality via human agreement. 

To test our expansion methods, we sub-sampled from each labeled 
set four training sets of varying sizes: 1000, 2000, 5000, and 
10,000.  

Our test data is collected in a similar way. Table 3 describes the 
number of urls in the test sets for our three classification tasks. 

5.1.2 Baseline 
As a strong baseline, we employ fully supervised commercial-
grade web page classification system used at Yahoo!. For our 
model, we use a Gradient Boosting Decision Tree (GBDT, Hastie 
et al. 2001) with a large collection of manually annotated positive 
and negative training examples. GBDT first trains a weak learner 
(f1) with a sample of the training data and then re-weights other 
samples based on the f1 classifier (to overweight difficult 

examples). GBDT then learns a new model based on the weighted 
samples and iteratively repeats this procedure. Our preliminary 
result has shown that GBDT outperforms SVM in web page 
classification tasks. Although SVM seems the better choice in 
regular text classification with a bag-of-words mode, GBDT 
performs better in web page classification with access to non-
textual features such as page structure, in-link and out-link 
patterns, and url patterns (described in 5.1.3). The exact reason 
why GBDT performs better for this task still needs to be further 
studied but we believe that it might be due to the fact that GDBT 
doesn’t require feature value normalization. With various groups 

Table 3. The number of positive and negative data in test 

sets 

Model Name # positive data # negative data 

Howto 1248 2297 

Adult 1048 2765 

Review 511 903 
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Figure 1. Adult models’ AUC, Fscore and Accuraccy 

comparison between baseline system and Click Data Model 

(CDM) 

 



of features whose value ranges are quite diverse, it is a challenge 
to find optimal way of normalizing values for SVM. GBDT also 
has much faster training and decoding time compared with SVM 
and results in much smaller models to be stored in memory, both 
very desirable properties for a commercial web page classifier 
used for classifying billions of web pages. 

5.1.3 Features 
Our classifier uses various groups of features. Textual features 
contain ngram features such as unigrams and bigrams in different 
sources of a page (e.g., body, title, and anchor text). It also 

includes the total number of words in a page and the total number 
of capitalized words. Link features of a page represent patterns of 
out-links (i.e., urls that the page points to) and in-link (i.e., pages 
that point to this page). Url features counts the length of a url and 
checks if a url contains certain terms. HTML features specifically 
look into html tags and check weather a page contains certain 
html tags(e.g., <i> and <b>). Other features consider if a page 
contains images, tables, and javascript. 
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Figure 2. Review models’ AUC, Fscore and Accuraccy 

comparison between baseline system, Click Data Model 

(CDM) and Query Constraint Model (QC). 
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Figure 3. Howto models’ AUC, Fscore and Accuraccy 
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5.1.4 Systems 
We instantiated our CDM and QC models from Section 4 using 
fully anonymized click log statistics collected in December 2008 
at a commercial search engine, as described in Section 3. Both 
CDM and QC are modeled in the same way as the Baseline using 
GBDT and the same set of features. 

5.1.5 Metrics 
Section 5.4 presents the evaluation result of how well the 
proposed methodology correctly identifies similar pages. We 
measure this by precision of both positive and negative expanded 
urls. Human judgment is considered as a correct label for a url. 

The rest of the section will present how the expanded pages affect 
the classification performance. We measure our classifiers by 
three standard metrics: Area Under the ROC Curve (AUC, 
Fawcett, 2003), Fscore, and Accuracy. 

5.2 Label Propagation Analysis 
This section investigates whether expanding training data using 
click data improves web page classification performance and 
whether we can reduce the required number of human judgments. 
For each classification task, we compare our CDM and QC 
models against the strong baseline presented in Section 5.1.2. 

Figures 1, 2, and 3 illustrate the performance gains of our CDM 
and QC models compared with our state-of-the-art baseline Web 
page classifier in terms of AUC, F-score and Accuracy, on the 
adult, review and how-to classification tasks, respectively. 

For each classifier, we use different sizes of seed data: 1000, 
2000, 5000, and 10,000. 

Below we analyze the performance of CDM and QC. 

5.2.1 CDM Performance Analysis 
The amount of expanded data is controlled by two similarity 
thresholds (i.e., T1 and T2 in Table 2). In our experiments, we 
experimentally set these thresholds by optimizing them using a 
grid search over a held out development set of 200 examples, 
annotated the same way as described in Section 5.1.1. Intuitively, 
high thresholds result in more precise expansions at the cost of 
fewer amounts of data. On the other hand, low thresholds increase 
coverage but result in lower precision. We expect high precision 
to be most important, however too few training expansions would 
likely not affect the GBDT modeling. 

adult: For the adult classification task, CDM mostly performs 

better than the baseline in all three measures except the model 
with 10,000 manually labeled examples (Figure 1). With large 
amounts of manual data, the benefit of click data is minimal since 
newly discovered pages by CDM are subsumed by other manually 
labeled data. The biggest improvement of CDM is observed with a 
model using 5000 labeled data as a seed set (+1.07% in F-score, 
+0.81% in Accuracy and +0.25% in AUC). 

review: Similar to above, CDM outperforms the baseline in all 

three measures (Figure 2) except when the labeled data is too 
small (i.e., 1000) or too many (i.e., 10,000). With small amount of 
labeled data, our expansion method does not discover many new 
pages and the system performs almost the same as the baseline. 
With 10,000 labeled pages, again the extra urls added by our 
method didn’t provide useful signal to the classifier. An 
interesting observation is that CDM with 5000 manually labeled 

data performs as well as the baseline system using 10,000 
manually labeled examples. By leveraging click data with our 
proposed method, we reduce the manual labor by 50%. Also, 
CDM with 2000 labeled examples performs similar to the baseline 
with 5000 manually labeled examples. This demonstrates our 
initial hypothesis that user click data can reduce the total amount 
of human labeling cost. 

how-to: CDM on the how-to classification tasks behaves 

differently from the other two. With 1000 and 2000 human 
labeled data, CDM performs worse than the baseline. Manual 
inspection showed that the expanded urls are very noisy and in the 
next paragraph we report error analysis. With more labeled data 
(5000 and 10000), CDM performs better than the baseline. With 
5000 seed examples, CDM outperforms the baseline with 10,000 
data.  

We performed error analysis to understand why many false 
positive and false negative pages were found. Interestingly, some 
positive urls discovered by our system are indeed how-to pages 
but they negatively impacted the performance of CDM because 
they are “excluded” by our class definition. For the example query 
“how to fix broken necklace”, a page with a text description of the 
steps to fix a necklace has very high page similarity with a page 
with a video clip showing how to fix it without any textual 
description. Since our definition of how-to was restricted to 
analyzing textual descriptions, adding the latter page doesn’t 
improve the classifier performance. Another type of false positive 
is a page whose content has changed or is deleted. For example, 
for a query “iphone review”, a page with “iphone review” in its 
title but without a written review is likely to have high similarity 
to positive review pages since it shares queries with them and is 
likely to be clicked by users. However, since the page does not 
have a review and contains other contents such as advertisements 
and a list of links to buy an iPhone, the performance of the system 
deteriorates. Since our expansion algorithm does not leverage the 
textual contents of expanded pages, it is impossible to detect this 
type of false positive pages. This issue remains a direction for 
future improvements (see Section 6). 

Not all the urls in the human labeled data occurred in the one 
month click data we used to build the similarity graph. We 
categorize this data into the following three types:  

Data type Human labeled 
Present in 

Click Graph 

TypeA Yes Yes 

TypeB Yes No 

TypeC No Yes 

 

TypeA is labeled by human editors and is also present in our page 
similarity click graph. TypeC is automatically expanded data 
using TypeA as a seed set. TypeB is labeled by human editors but 
does not appear in our similarity graph. There are three main 
reasons why TypeB exists: 1) much of our human-labeled data we 
use for our research was collected and annotated before click data 
was available; 2) our experiment uses only one month of click 
data so urls in TypeB may occur in other months or years; and 3) 
even if some urls appear in the one month click data, they may get 
filtered out because we didn’t consider a (query, url) pair if the url 
is clicked less than 10 times with the particular query.  



One interesting question is how much improvement we can expect 
if we only had TypeA labeled data and limited editorial resources? 
Currently, the baseline system in Figures 1, 2 and 3 are trained 
with both TypeA and TypeB, and CDMs are trained with all three 
types. TypeB is manually labeled but does not contribute to 
discovering new pages (i.e., TypeC).  In order to investigate this 
scenario, we performed another experiment with the following 
setup: 1) collect sample pages that occur in the click data (i.e., 
TypeA) and  2) expand the urls using the page similarity in the 
click graph using  (i.e., collecting data of TypeC). The baseline 
system is trained with TypeA and a Click data model is trained 
with both TypeA and TypeC. The result is shown in Table 4. As 
we can see from the table, CDM on the all three models had 
improvements on all three classification metrics. This suggests 
that for new tasks, when we can afford only a small number of 
manually labeled examples, it is better to sample the training 
examples from the click graph so that we can use all the labeled 
data as seeds and maximize the number of automatically expanded 
data. 

5.2.2 QC Performance Analysis 
This section analyses the performance of the QC model as 
depicted in Figures 2 and 35. The QC model expands seed sets as 
in CDM and then adds term pattern constraints in the shared 
queries (see Section 4.2 for the description of the algorithm.) Note 
that the goal of QC model is to filter out false positives from 
CDM by looking at patterns in the shared queries between seeds 
and candidate expansions.  

how-to: For the how-to classifier, we filter out any page that 

does not have terms that strongly indicate the user intent such as 
“how to” in the queries of the page even if the page has high 
similarity score with pages in the seed set. With small training 
data (i.e., 1000 and 2000), QC outperforms CDM yet CDM 
performs better with 5000 and 10000 examples. 

review: For review page, similarly, we exclude pages that do 

not have “review” in the query terms. QC outperforms the 
baseline in all three measures and outperforms CDM with small 
amounts of manually labeled examples (i.e., 1000 and 2000). The 
QC model with 2000 examples outperforms the baseline with 

                                                                 
5 Note that we did not apply the QC model on the adult query 

classifier since the constraint patterns were too offensive to 
analyze. With the adult class, one would require a broad set of 
constraint patterns since there are a lot of diverse adult terms 
that indicate an adult intent. 

5000 examples. However, QC performs worse than CDM with 
5000 examples, which may be due to the fact that QC doesn’t 
have as many expanded data as CDM. 

We conclude that QC is useful especially when manually labeled 
data is small. It can reduce the noise in expanded data. However, 
error analysis showed that with large collections of manually 
labeled examples, QC tended to filter out many true positives. 

5.3 Evaluating the Active Learning Approach  
The question we tried to answer to in this section is “Can we 
adopt CDM model in the active learning frame work?”. We 
investigate whether we can reduce the amount of human 
annotation effort by introducing the proposed method in data 
collection phase. This algorithm is described in Section 4.3. We 
apply the method in howto model (Table 5). We first use a seed 
set (Seed1) labeled by human annotators. Then we expand Seed1 
and collect a set of similar urls by our proposed system using page 
similarity score (Expan1). Human annotators label Expan1 and 
create another set (Seed2). This annotation is likely to correct 
noise in Expan1. We apply the expansion algorithm and collect a 
set of similar urls using both Seed1 and Seed2 as seed sets 
(Expan2).  Then we compare a system trained with only Seed1 
(SYS_Seed1), a system trained with both Seed1 and Seed2 
(SYS_Seed12), and a system trained with all Seed1, Seed2 and 
Expan2 (SYS_all). SYS_Seed1 required 818 human judgments 
whereas SYS_Seed12 needed 962 judgments total. SYS_all also 
needed only 962 human judgments since Expan2 (124 pages) is 
automatically generated without human annotation. SYS_all 
outperforms both SYS_Seed1 and SYS_Seed2. It also 
outperforms a system trained with 3000 human labeled data 
(SYS_3000). By applying the proposed system of automatically 
augmenting labeled data in the data collection phase, we were 
able to build a model with only 962 human judgments yet the 
system outperformed a system with 3000 human judgment. 

5.4 Intrinsic Analysis of CDM Expanded Data 
Now we evaluate the quality of our CDM expansion algorithm 
outside of the web page classification tasks. Specifically, for the 
how-to classifier, we took a random sample of 50 positive and 

50 negative examples expanded by our model. We manually 
evaluated the assigned class labels (without looking at the system 
classification) and report below the precision of both classes. 
Recall is difficult to approximate since it is impossible to get a 
complete list of all how-to pages on the Web. Positive class has 

82.3% precision whereas negative class has 83.6% precision. 

Table 4. A comparison between a baseline model and a click data model. All the manually annotated data is also present in the 

click graph.  

# positive # negative Classifier model AUC Accuracy Fscore Precision Recall 

Manual annotation? 

       Yes No Yes No 

Howto Baseline 0.8817 80.31 74.32 68.71 80.93 284 0 534 0 

Howto CDM 0.8889 81.10 75.51 69.42 82.77 284 63 534 81 

Review Baseline 0.7815 64.64 64.18 50.62 87.67 62 0 250 0 

Review CDM 0.8216 75.53 68.60 63.96 73.97 62 15 250 97 

Adult Baseline 0.9552 89.61 81.93 78.50 85.69 111  0 496 0 

Adult CDM 0.9614 91.87 84.55 88.52 80.92 111  84 496 524 

 



6. DISCUSSION AND FUTURE WORK 
Is the proposed method always useful for web page 

classification?:  Intuitively, our hypothesis, that two pages that 

tend to be clicked by the same user queries tend to be topically 

similar, is better suited for topical page classification tasks such as 
review and adult than non-topical classification tasks such as 
spam page (i.e., a page that manipulates search engines in order to 
get itself ranked higher than it actually deserves) and missing 
page (i.e., a page whose main content has been removed or 
deleted). For example, even if two pages share same queries in a 
click graph, one page could simply be a missing page yet the other 
could be not. Among topical classification tasks, however, it is 
expected that some classification task gets more benefit than 
others. In a practical point of view, this would be empirically 
tested without extra cost once a page similarity graph using click 
data is constructed. Since we need training and testing data for 
any supervised learning method, we can first label two sets of 
data. Then we can simply use part of the training data as seed set, 
expand the data set with thresholds learned with part of a training 
data and test with a test set.   

How can we improve the quality of automatically labeled data 

from unlabeled data?: As one way of improving the quality of 
automatically expanded data, we proposed the query constraint 
model in this paper (Section 4.2). Empirical results demonstrate 
that the QC model outperforms both the baseline and CDM 
model, especially when the seed set size is small (Section 5.2.2). 
Our vision for an approach to further assuring the quality of the 
expanded data is to consider the contents of those expanded 
pages. This still doesn’t require crawling all pages in the 
similarity graph. Once our system suggests candidate pages as 
positive of negative, we can crawl the contents of only those 
pages and apply a content analysis system (e.g., a classifier or a 
pattern matcher) to select more convincing candidate pages. It 
remains as future work how to build an efficient content analysis 
system for this purpose.   

In the future, we would also like to explore if more click data 
(e.g., one year click data) would improve the performance of our 
current system, which uses only one month click data. Also, it 
would be interesting to investigate the impact of propagating class 
labels of seed sets to nodes that are not directly connected to seed 
sets. This will introduce more noise to the expanded set but 
ultimately discover more pages. Finally, we would like to examine 
more sophisticated methods for query constraint than the current 
model that is based on simple pattern matching in shared queries. 

7. CONCLUSION 
In this paper, we have presented a method to improve webpage 
classifiers by leveraging click data to augment training data by 
propagating class labels to unlabeled similar pages. Our 
hypothesis is that unlabeled pages similar to our positive and 
negative labeled documents will tend to be clicked on by the same 
user queries. Thus, we can augment manually labeled data by 
modeling the similarity between pages in a click graph. We 
demonstrated the benefit of our approach with three different 
classification problems. The proposed method required much less 
human labeled training data than current state-of-the-art 
classification methodologies. We also proposed an active learning 
method using click data. It outperformed current models with less 
amount of human annotation effort. 
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