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ABSTRACT
Sets of named entities are used heavily at commercial search
engines such as Google, Yahoo and Bing. Acquiring sets of
entities typically consists of combining semi-supervised ex-
pansion algorithms with manual cleaning of the resulting
expanded sets. In this paper, we study the effects of differ-
ent seed sets in a state-of-the-art semi-supervised expansion
system and show a tremendous variation in expansion per-
formance depending on the choice of seeds. We further show
that human editors, in general, provide very bad seed sets,
which perform well-below the average random seed set. We
identify three factors of seed set composition, namely proto-
typicality, ambiguity and coverage, and we investigate their
effects on expansion performance. Finally, we propose vari-
ous automatic systems for improving editor-generated seed
sets, which seek to remove ambiguous and other error-prone
seed instances. An extensive experimental analysis shows
that expansion quality, measured in R-precision, can be im-
proved on average by a maximum of 46% by removing the
right seeds from a seed set. Our automatic methods outper-
form the human editors seed sets and on average improve
expansion performance by up to 34% over the original seed
sets.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—concept learning

General Terms
Algorithms, Experimentation, Measurement.

Keywords
Seed set expansion, information extraction, seed set refine-
ment.

1. INTRODUCTION
Collections of named entities are used in many commercial

and research applications, such as question answering [29]
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and biomedical information extraction [23]. Search engines
such as Yahoo, Bing, and Google collect large sets of enti-
ties [14, 6] to better interpret queries [27], to improve query
suggestions [5] and to understand query intents [11].

Manually creating and maintaing large lists of entities is
expensive and laborious. In response, many automatic and
semi-automatic techniques have been developed. Among
them, semi-supervised techniques are most popular because
they allow the users to expand specific target classes without
the need for large amounts of training data. Semi-supervised
methods, also called set expansion or list expansion meth-
ods, can be broadly separated into two categories, pattern
based techniques [10] and distributional techniques [15].

Typical semi-supervised methods start with a small set of
seed instances from a specific concept, usually obtained from
an editor. Then they employ external sources of knowledge
such as large corpora of text or query logs to expand the
set of seeds to a larger set of candidate expansions from the
same concept. For example, the seed set {Oxygen, Mercury,
Silicon} for the concept Elements should return as candi-
dates all the elements in the periodic table. However, even
state-of-the-art systems inevitably produce expansions con-
taining errors and omissions. A particular method towards
cleaning expansion errors using minimal annotation effort is
described in [28].

In practice, we observe that the quality of the expansion,
for a given system can vary greatly based on the nature of
the concept and the seed set. Different seed sets can produce
widely varying results. This variation can be attributed to
a variety of factors such as the ambiguity of the seeds, noise
introduced by a system’s particular representation of words,
and the coverage of the concept’s semantic space by the
seeds. For example, the seed set {Helium, Neon, Argon} is
a biased representation for the concept Elements because it
does not completely cover the semantic space of the concept
Elements, and it will tend to expand solely to instances of
the more specific concept Inert Gasses.

We also observe in practice that when human editors are
asked to produce seed sets, they generate widely varying
sets, and generally, surprisingly, poor expansion quality.

In this paper we employ a state-of-the-art seed set ex-
pansion system [17] to study the impact of different seed
sets. From six benchmark lists, we produce many random
seed sets and the corresponding resulting expansions. We
demonstrate large variance in their expansion performance
and show that human editors choose seed sets that result in
expansions of lower quality compared to an average random
seed set. We then propose several algorithms for improving



the seed sets given by human editors by removing seeds that
tend to attract false positives. We identify three factors of
seed set composition that affect the overal expansion quality
and present unsupervised algorithms for improving the qual-
ity of expansions by removing seeds from the original seed
sets. We empirically show, by means of an extensive evalua-
tion, that we can improve the quality of seed sets, measured
using R-precision [2], by up to 46%.

The remainder of the paper is organized as follows. In the
next section we review related work and position our con-
tribution within its landscape. In Section 3, we study the
seed sets provided to us by users and exhaustively evaluate
all possible removals to empirically show the wide variation
in the expansion quality of the seed sets. Further, we iden-
tify three primary factors in the seed set composition which
affect expansion quality. Section 4 presents algorithms for
our task of seed set refinement based on the parameters of
composition identified in Section 3.3 to select subsets of ed-
itorially generated seed sets. The datasets, our evaluation
methodology and our experimental setup is described in Sec-
tion 5 and in Section 6, we present our experimental results
with an analysis of the algorithms presented in Section 4.
Finally we conclude with some discussion and future work
in Section 7.

2. RELATED WORK
Automatically building large lists of named entities is a

common task within the information retrieval and natu-
ral language processing communities, supported by a large
body of work. Various supervised, unsupervised and semi-
supervised techniques have been proposed for this task. Su-
pervised techniques work by tagging occurrences of named
entities in text with coarse-grained class labels such as Peo-
ple, Organization and Locations [12, 9]. Performing finer-
grained entity tagging with supervised methods requires a
lot of training data. Unsupervised methods, on the other
hand, rely on clustering techniques and word co-occurence
patterns to extract entity sets [18, 8]. However, due to their
unsupervised nature, the concepts and entity sets discov-
ered by such methods cannot be targeted to a specific class
of interest.

In practice, semi-supervised approaches are commonly used
as they allow for targeting a specific class of interest, with-
out the need for extensive training data. These methods
depend on a small set of seed instances to create entity lists.
They are either based on distributional approaches or use
lexico-syntactic patterns to expand a seed set to a larger set
of candidates. Some methods such as [22, 21] apply lexico-
syntactic patterns to corpora such as web text or query logs,
to expand a small set of seeds into a larger set of candi-
dates. Other methods such as [13, 16] use the distributional
hypothesis to expand seed sets.

Errors in set expansions are pervasive, even for state-of-
the-art expansion systems. However, lists with high preci-
sion are important in a variety of applications. For example,
most search engines use such lists in query interpretation to
provide highly relevant results. Editorial annotations are
commonly used, sometimes in addition to semi-supervised
techniques [28] to clean entity sets generated by set expan-
sion systems. Using user feedback is a common technique
to improve system performance with minimal supervision.
For example active learning methods use a group of classi-
fiers to focus the efforts of an editor to test cases which have

Table 1: Seed set composition greatly impacts set ex-

pansion quality.

List MAX MIN AVG EDITOR
Elements 0.951 0.450 0.890 0.520
Roman Emperors 0.374 0.0 0.283 0.283
F1 Drivers 0.274 0.0 0.209 0.249
Countries 0.650 0.453 0.643 0.629
U.S. States 0.952 0.538 0.913 0.876
California Counties 0.333 0.0 0.147 0.143

the maximum impact. Active learning techniques have been
successfully used in a variety of natural language tasks [7,
3]. One can imagine an active learning based system which
identifies bad seeds in set expansion with help from an edi-
tor.

Another approach to generating good seed sets is using
completely unsupervised clustering techniques such as [20],
and using the committee members generated by CBC as
seed sets. Even though, the committee members are unam-
biguous instances from the concept and can form good seed
sets, the concept that is discovered might not be what an
editor wanted. Unsupervised methods, by definition are not
easy to direct, and hence making it more difficult to target
specific concepts.

Seed sets represent concepts. Understanding what makes
a good seed set, requires understanding how people repre-
sent concepts with instances. Prototype theory [25] suggests
that people represent a concept using prototypical and un-
ambiguous instances from the concept. However, as shown
in section 3.3.1, prototypical examples might actually reduce
the quality of expansions. Also, there is a notion of Basic
Level categories [26], which can be defined as partitions on
the concept space that are maximally informative. We try
to model this in section 4.3 and show that we can generate
seed sets which have high quality expansions.

3. IMPACT OF SEED SETS
This section investigates the effect of seed set composition

on expansion performance and then studies whether human
editors are good at generating seed sets which lead to good
expansions. Finally, we propose a set of three factors that
can be attributed to the seed set composition effect.

3.1 Seed Set Composition
The performance of a set expansion system, measured as

the quality of its candidate expansion can vary with the set
of seeds provided to it and with the type of concept that a
set expansion system is trying to expand. These variations
in performance can arise from a number of factors such as
the size of the seed set, the composition of the seed set and
the coherence of the concept being expanded. Quality of
set expansion as a function of seed size has been extensively
studied in [17], where they show that gains are limited for
seed sets of sizes greater than 10. In this section, we study
the impact of the composition of the seed sets on the expan-
sion performance.

To study the effect of seed set compositionality on expan-
sion performance, we use six benchmark lists described in
Section 5. We sampled 5,000 random subsets, each of size
10 from the six lists, totaling 30,000 trials. Each of these
seed sets were expanded using a state-of-the-art distribu-



0 

0.2 

0.4 

0.6 

0.8 

1 

1  2  5  10  25  50  100  150 

Elements ‐ Precision Vs Rank  

Best Machine Output(0.987) 

Worst Machine Output(0.811) 

Average Performance(5000) 

Expert Editor 

Editor Average 

0 

0.2 

0.4 

0.6 

0.8 

1 

1  2  5  10  25  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800  850  900 

Roman Emperors ‐ Prec vs Rank 

Best Machine Output(0.582) 

Worst Machine Output(0.058) 

Average Performance(5000) 

Expert Editor 

Editor Average 

0 

0.2 

0.4 

0.6 

0.8 

1 

1  2  5  10  25  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800 

F1 Drivers ‐ Prec vs Rank 

Best Machine Output(0.736) 

Worst Machine Output(0.454) 

Average Performance(5000) 

Expert Editor 

Editor Average 

0 

0.2 

0.4 

0.6 

0.8 

1 

1  2  5  10  25  50  100  150  200  250  300  350  400  450  500  550  600  650  700  750  800 

Countries Prec vs Rank 

Best Machine Output(0.894) 

Worst Machine Output(0.647) 

Average Performance(5000) 

Expert Editor 

Editor Average 

0 

0.2 

0.4 

0.6 

0.8 

1 

1  2  5  10  25  50  100  150  200 

US States Prec vs Rank 

Best Machine Output(0.995) 

Worst Machine Output(0.787) 

Average Performance(5000) 

Expert Editor 

Editor Average 

0 

0.2 

0.4 

0.6 

0.8 

1 

1  2  5  10  25  50  100  150  200  250  300  350  400 

California Coun+es ‐ Prec Vs Rank 

Best Machine Output(0.65) 

Worst Machine Output(0.039) 

Average Performance(5000) 

Expert Editor 

Editor Average 

Figure 1: Precision vs. Rank curves for the six benchmark lists.

tional set expansion system [17]. Table 1 shows the expan-
sion performance of the two random seed sets that generated
the maximum and minimum performance of these seed sets,
measured as the R-precision of the expansion. The table also
lists the performance of an average random seed set. There
is a wide variation in performance, as much as 41%, con-
firming that seed set composition has a significant impact
on the quality of expansions.

Certain lists such as U.S. States and Countries show less
variation between a random seed set and the best possible
seed set than others. This suggests that some lists and the
concepts they represent are easier to expand than others.
On the other hand, lists such as Roman Emperors and F1
Drivers show zero R-precision with the worst possible seed
set and a wide variation in expansion quality between the
best performing seed set and the worst performing seed set.
Thus, choosing the right seed set for these lists is critical in
order to achieve high quality expansions. These conclusions
are further validated by Figure 1, which shows that for the
easier lists such as U.S. States and Countries, composition-
ality has a significant but lesser effect than that for sensitive
lists such as Roman Emperors and F1 Drivers that show a
tremendous variation in quality of expansions of up to 25%
within the top-200 ranks.

3.2 Do humans generate good seed sets?
To see how non-expert editors (humans) compare with the

performance of randomly chosen seed sets, we asked four ed-
itors to provide ten seed instances from the concepts repre-
sented by the six lists introduced in the last section. None
of these editors have had any previous experience with set
expansion systems. The scores were averaged over all edi-
tors and their performance is shown in Figure 1. We observe
that the performance of the average editor is worse than the

expansion performance of a randomly chosen set of seeds of
the same size. Seed sets given by editors are not good for
obtaining high quality expansions. A task in this paper is
to understand why.

We also asked an expert editor, who has prior experience
with set expansion systems, to provide us with 10 seeds for
the same six lists. The performance of the expert editor’s
seed sets is also shown in Figure 1. Stunningly, an expert
editor’s seed sets can perform as good as the best performing
random seed set. This observation is true across the six
lists, where the expert editor’s seed sets show consistently
higher performance over the average random seed set and
the average of non-expert editors. Table 1 shows the R-
precision averaged over the five editors is again below the
average random seed set.

To uncover the reasons why non-expert editors generate
seed sets that result in poor expansion performance com-
pared to seed sets generated by an expert editor, and to
account for the variation in expansion performance with dif-
ferent seed sets, we studied the composition of the seed sets
and identified three important factors which affect the ex-
pansion quality. The next section describes these factors in
turn.

3.3 Factors in Seed Set Composition
The wide variation in the quality of set expansion due to

seed composition can be attributed to three primary factors
- prototypicality, ambiguity and coverage. While prototypi-
cality and ambiguity are properties of the individual seeds,
coverage is a property of the seed set. These factors, which
are dependent on seed set composition, jointly affect the
quality of set expansion systems.

Other factors such as the size and the bias in the corpus
used for set expansion and type of the set expansion system



used also affect the quality of set expansion, but are not
directly related to the compositionality of seed sets.

3.3.1 Prototypicality
Prototypes are words that are most representative of a

class, for example words like chair and table can be con-
sidered prototypical for the class Furniture. Most human
generated seed sets are composed mostly from prototypical
examples, because they are the most natural examples hu-
mans use when expressing a concept [24].

Prototypicality of a seed depends on various factors, in-
cluding the editors model of the world, the nature of the
concept which it is drawn from and the dimensions of a
concept. For example, the seeds dog and cat can be con-
sidered prototypical of the class pets, however, they are not
prototypical of the class animal, to which they also belong.
Completely modeling the prototypicality of a seed instances
requires modeling the semantic space of a concept, which is
difficult to say the least. Instead, we approximate the pro-
totypicality of a seed as the likelihood of drawing the seed
from a concept. This is a reasonable assumption because
the more common and representative instances of a class
are also more likely to be frequent in text.

In the case of set expansion systems, we observed that pro-
totypical examples typically introduce a lot of noise in the
expansions. Prototypical examples are very frequent in text
and tend to occur with a wide variety of contexts that are not
related to the specific class we might want to expand. For ex-
ample, a prototypical example for the class of golfers might
be Tiger Woods. However, the word Tiger Woods tends to
be used in a other contexts, such as Tiger Woods attended
a charity fund raiser and highly paid sportsmen including
Tiger Woods.... These contexts are not directly related to
the class golfers and arise because Tiger Woods also belongs
to another related class - celebrities, however, Tiger Woods
is usually not considered a prototype for the class celebrity,
resulting in the expansion containing other celebrities who
are not golfers.

The problem is that prototypical seeds are also more likely
to occur in contexts that are characteristic of a superordi-
nate concept than other non-prototypical seeds, introducing
words from the superordinate concept into expansions. Sec-
tion 4.1 proposes a simple algorithm to improve the seed
set’s expansion quality by removing prototypical examples.

3.3.2 Ambiguity
The second compositional factor we identified as affect-

ing the quality of expansions was the semantic ambiguity of
seeds. Polysemy of a seed can introduce semantic ambigu-
ity resulting in errors during expansion. For example, the
seed set {iron, mercury, carbon} has two polysemous words
- iron and mercury, both having varying degrees of poly-
semy. The seed mercury is highly polysemous belonging to
two completely unrelated classes elements and planets, with
both senses occurring equally likely. This introduces errors
such as mars, venus and jupiter, all from the class planets
into the expansion for the class elements.

Another source of ambiguity occurs when certain seeds
are used more often in contexts that also occur with words
that are not related to the primary sense of the seeds, such
as in analogical and metaphorical usages. For example the
seed, Barack Obama for the class politicians tends to bring
in candidates from the class athletes because the seed is used

analogically in contexts such as .. Barack Obama won the
race ... and running for the seat....

Seeds which are semantically ambiguous can introduce er-
rors in set expansions. Annotating seed instances with their
senses can be impractical in most set expansion systems that
depend on a large corpus because that would require anno-
tating all the senses of seed instances within a corpus. How-
ever, as a first approximation to semantic ambiguity, we can
use simple clustering technqiues to identify ambiguous seed
instances. Ambiguous seeds tend to occur in contexts that
are associated with words not belonging to the concept be-
ing expanded. The more ambiguous a seed instance is, the
lesser is its similarity to any particular sense. Hence they
can be identified as the outliers, when a set of seeds are
clustered based on their semantic similarities.

Section 4.2 proposes a techniuqe using clustering algo-
rithms such as average-link clustering to identify outliers
and remove ambiguous seed instances.

3.3.3 Coverage
Another compositional factor which determines the qual-

ity of set expansion for a given seed set is the coverage of
the seed set. Informally, we can define the coverage of a
seed set, with respect to a concept, as the amount of se-
mantic space which the seed set shares in common with the
semantic space defined by the concept.

For example, given the concept elements, intuitively, the
seed set {iron, nitrogen, boron, uranium} covers more se-
mantic space than a set like {helium, argon, xenon}. The
latter set is more specific and actually represents a subordi-
nate concept of elements - inert gasses. If we can represent
the concept as a collection of all semantic properties appli-
cable to its instances, then we see that the seeds in second
set overlap with very little semantic properties from the con-
cept and have high overlap with other seeds in the seed set.
On the other hand, seeds from the first set, whose seman-
tic properties overlap more with the concept elements than
among themselves are able to better represent the concept
by covering more of the semantic space.

Another constraint when describing the coverage of seed
sets is the inherent ambiguity within the seed sets. When a
seed set contains an ambigous seed, then that seed will have
lesser proportion of semantic properties in common with the
concept than a more specific and unambiguous instance.
Following the example of the concept elements, a seed in-
stance like mercury shares semantic properties with both
the class elements and other completely unrelated concepts
such as planets and roman gods. On the other hand, a seed
instance like lithium, which is a monosemous element, does
not share many semantic properties outside of the class ele-
ments. Thus, we can say that the seed set containing lithium
rather than mercury will generally have higher coverage of
the class element.

Section 4.3 presents an algorithm which tries to maximize
the coverage of a seed set by minimizing the semantic overlap
between its elements by choosing a subset with minimum
information overlap.

4. SYSTEMS
We observed in section 3 that average human editors do

not produce seed sets which result in good candidate expan-
sions. We also identified three compositional factors which
affect the quality of expansions. To improve the quality of



expansions for seed sets generated by a non-expert editor,
we present three algorithms, each dealing with a factor of
composition, that remove seeds from the seed set that can
otherwise potentially introduce errors in the expansion.

These set refinement algorithms are designed to be inde-
pendent of the set expansion algorithm and once the seeds
have been removed from the seed set, the expansion algo-
rithm does not have access to the removed seeds or the
original seed set. As most semi-supervised algorithms use
the contexts of words to represent their semantics, they
encounter similar problems and these set refinement algo-
rithms can be used independently of the set expansion sys-
tem. Also, all three algorithms presented in this section are
unsupervised and do not require any extra effort from an
editor.

Removing seed instances from a seed set first requires de-
termining the number of seeds to be removed. The number
of seeds to be removed depends on both the seed set being
refined and the nature of the concept being expanded. Con-
cepts that are less frequent in a corpus require less seeds
to be removed to get a high quality expansion, compared
to a concept that is more frequent in text. Identifying the
number of seeds for each concept automatically is not dealt
with in the three algorithms presented, and it is considered
as a tunable model parameter. Setting of this parameter is
discussed in Section 6.1.1.

4.1 Prototype Removal
The first method deals with removal of prototypes from

the seed set. A prototype is a common and unambiguous
instance from a concept. Also, prototypical words tend to
be more common in text than specific instances from the
same concept. We can statistically approximate the proto-
typicality of a seed s as the probability of the word given
the concept C from which a word is drawn. Since, we as-
sume, all the seeds in the seed set are drawn from the same
concept, we use the seed set as an approximation to the true
concept C.

Formally we define prototypicality of a seed s as

Prot(s) =
count(s)

Σs′∈Ccount(s′)
(1)

where the count(s) for each seed s is the the number of times
it occurs in a corpus.

For each seed in the seed set, we calculate its prototypi-
cality score as defined by equation 1. Then we sort all the
seeds based on their prototypicality score and remove the
seeds which are most prototypical of the class, i.e, seeds
with high prototypicality score. This is identical to choos-
ing the least frequent seeds from the seed set. By removing
the most prototypical seeds, we expect the contexts which
are ambiguous with instances from other concepts to be fil-
tered, thus providing us a more robust representation of the
concept we are trying to expand.

4.2 Clustering
The second algorithm deals with the removal of ambiguous

seeds from a seed set. Ambiguous seed instances, by defini-
tion belong to more than one concept, sometimes even be-
longing to two or more completly unrelated concepts. Thus,
they tend to be less similar to any particular concept than
their non-ambiguous counterparts. We can capture this in-
tuition using a clustering over the words in the seed set. We

expect the more non-ambigous seed instances to be more
similar to the intended concept, and consequently more sim-
ilar to themselves.

Any clustering over the set of seeds based on their similar-
ities results in the ambiguous seeds being outliers. This im-
plies that members of the tightest cluster are non-ambiguous
instances from the concept represented by the seed set. We
can remove the ambiguous seed instances by first clustering
the seed set, and then choosing the tightest cluster as our
new seed set. We ignore all other seeds that are not part of
the tightest cluster.

First, we represent the semantics of each seed in the seed
set by using a distributional feature vector following [17].
Each feature in the feature vector is composed of contexts
that the seed occurs in. We weight the components of the
feature vector in relation to the seed using point-wise mu-
tual information between the seed and the context. We use
this distributional feature representation of the seeds in an
average-link clustering algorithm, where the link score be-
tween two seeds is computed as the pairwise cosine similarity
between their respective feature representations.

The average-link clustering algorithm is an iterative ag-
glomerative technique, which merges two clusters at each
step using the average similarity between all the seeds in
the candidate clusters. This hierarchical behavior results in
a dendrogram. To retrieve a clustering from the dendro-
gram, we cut it using a pre-determined threshold on the
number of desired clusters. The setting of the threshold is
discussed in Section 6.1.1. This parameter indirectly deter-
mines the number of seeds that must be removed from the
seed set. The tightness of each cluster was calculated as the
average cosine similarity between all the seeds in the cluster.
We chose the tightest cluster as our candidate seed set and
ignore all other seeds as ambiguous.

4.3 Minimum Overlap Criterion (MOC)
The third compositional factor affecting the quality of ex-

pansions is coverage of the seed set given the concept. A
seed set that better represents a concept is able to produce
higher quality expansions. We can model the coverage of
the concept by the seed set directly using a probabilistic
argument as follows.

We define a concept as a distribution over all words in the
vocabulary. Any set of words, or in our case, the seed set,
jointly defines a distribution over concepts. A set of seeds
S is said to have high coverage of the concept C, if it can
maximize the likelihood of the concept given the set of seeds.
However, the problem of directly modeling the concept space
or the polysemy of a set of words is intractable. To over-
come this intractability, we use a non-parametric technique
to identify a subset of fixed size that can best represent the
concept.

We start with the hypothesis that for a fixed size, a set
of seeds which can best represent a concept C is one which
provides maximum information to the concept and has mini-
mum redundancy. To motivate the hypothesis, recall the ex-
ample in section 3.3.3. The seed set {iron, nitrogen, boron,
uranium} compared to the seed set {helium, argon, xenon},
provides a better representation of the concept elements and
more coverage because the first seed set is more informative
to the concept elements than the second seed set. From in-
formation theory, we can see this as a problem of choosing
the set which has the least conditional entropy for the con-



cept given the seed set. However, choosing a subset of a
fixed size from the seed set by minimizing the conditional
entropy, would require us to evaluate all possible subsets.

We can simplify this process by adding another observa-
tion. The semantic overlap among the elements of the first
set is lower than the semantic overlap among the elements
of the second set, thus making the seeds in the second set
more redundant. Thus, we need to find a subset of seeds
that provides maximum information to the concept while
minimizing the overlap in information among themselves.

To represent the semantics of a seed we use a vector of dis-
tributional features, which are all the contexts which appear
with the seed, following the approach in [17]. To represent
the semantics of the concept, we start by finding the set of
features which are common to all the seeds. However, in
practice, seed feature vectors are sparse and the amount of
features shared between all the words is very small. To over-
come this, we represent the concept with the set of features
which are shared between a minimum of two seeds in the
seed set.

This feature representation allows us to calculate the amount
of semantic overlap between any subset of seeds given the
concept, as the joint information overlap between the seeds
in the seed set given the concept. We follow [19] and define
the joint information overlap between a set of seeds S and
a concept represented by the set of features C as:

I(S;C) = −
∑
f∈C

p(f) ⋅ log(
p(f ∧ S)

p(S)
) (2)

where p(f) is the probability of seeing the feature (con-
text) in the corpus, p(S) is the probability of seeing the
seed set under consideration, which can be computed as∑

s∈S p(s). p(f ∧ S) is the joint probability of seeing the
seed set S and the feature f . Since, our features are con-
texts surrounding the seeds, they are mutually exclusive. So,
we can compute the joint probability as

p(f ∧ S) =
∑
s∈S

p(f, s) (3)

Combining Equations 2 and 3, the joint information over-
lap is

I(S;C) =
∑
f∈C

p(f) ⋅ (log(
∑
s∈S

p(s))− log(
∑
s∈S

p(f, s)) (4)

The function I(S;C) is non-zero when the set S is not
empty. Also, it is a function which assigns a score to a set,
such that, given two sets, one subset of the other, the score
of the subset is lower. This indicates that the function is
sub modular and we use a greedy algorithm, called MOC
(Minimum Overlap Criterion) to find the S that maximizes
I(S;C).

The algorithm starts with an empty subset and adds one
element at a time at each iteration, such that the newly
added element, say e has maximum marginal value with re-
spect to the current seed set S. Here, maximum marginal
value can be calculated as I(S ∪ {e};C) − I(S;C). The
algorithm stops once it has reached a pre-defined size for
the subset. This subset is used as the seed set for expan-
sion. Again, the stopping criterion is considered a tunable
parameter and is trained on a development set as discussed
in Section 6.1.1.

5. DATASETS AND BASELINE
For evaluating the algorithms presented in Section 4, we

started with nine lists of named entities, a subset of the 50
gold standard lists from [17] 1. The 50 lists were chosen,
such that each list represents a single concept. They were
originally selected from wikipedia’s List of pages. We ran-
domly sorted the list of every noun in wikipedia. Then for
each noun, we checked whether it occurred in any of the List
of pages, if so we scraped this list - upto a maximum of 50
lists. If a noun belonged to multiple lists, the authors chose
the list that seemed most appropriate. Variants within the
lists were merged and the lists were manually cleaned.

The nine lists selected out of the 50 were Elements, Roman
Emperors, F1 Drivers, Countries, U.S. States, CA coun-
ties, First Ladies, American Internet Companies and super-
heroes. For the purposes of evaluation, lists extracted from
wikipedia were considered complete and treated as the gold
standard.

Three of the lists, First Ladies, American Internet Com-
panies and superheroes were designated as the development
set, over which the number of seeds to be removed, which
is a parameter to all our algorithms, were trained. The re-
maining sets were used to test the expansion performance of
the seed sets generated by the three methods in Section 4.

Both the clustering technique and the MOC algorithm
require statistics over distributional features of each seed.
The Prototype removal algorithm requires the frequency of
each seed in the seed set to compute equation 1. Wikipedia
served as the source corpus for all the algorithms described
in Section 4.

All articles were POS-tagged using [4] and shallow parsed
(phrase chunked) using a variant of [1]. For extracting the
distributional features for each seed in the seed set, we used
the processed corpus to extract each seed’s left and right
contexts, over which all required statistics were computed.
To expand the set of seeds, we employed the distributional
set expansion algorithm described in [17].

6. EXPERIMENTAL RESULTS
This section presents our system analysis on the task of

helping editors choose better seed sets. We begin by out-
lining our experimental setup and analysis metrics. Then,
we show evidence that our proposed methods significantly
increase expansion performance on six gold standard entity
types and we present an intrinsic analysis of our algorithms
addressing the three seed set composition factors introduced
in Section 4. Finally, we present a detailed error analysis.

6.1 Experimental Setup
To obtain an upper bound on the expansion performance

of the algorithms discussed in Section 4 we performed an
exhaustive analysis. First, we created trial seed sets from
the original seed sets provided to us by the editors by re-
moving all possible combinations of seeds, of sizes ranging
from 1 through 9. This resulted in 1024 trial seed sets for
each list in our collection resulting in a total of 9,216 trials.
Each of these trials were expanded using our set expansion
algorithm [17]. We used R-precision, which is the precision

1The gold standard is available for download at:
http://www.patrickpantel.com/cgi-
bin/Web/Tools/getfile.pl?type=data&id=sse-
gold/wikipedia.20071218.goldsets.tgz.



Table 2: Overall R-precision analysis over six gold standard entity types.
System Elements Roman Emperors F1 Drivers Countries U.S. States CA Counties Average
MAX 0.643 0.382 0.255 0.718 0.952 0.338 0.548
USER 0.481 0.160 0.163 0.514 0.857 0.073 0.374
PROTOTYPE 0.568 0.187 0.154 0.543 0.937 0.203 0.432
CLUSTER 0.491 0.300 0.219 0.616 0.892 0.18 0.449
MOC 0.620 0.286 0.224 0.626 0.952 0.305 0.502

at rank equal to the size of the gold standard set to evaluate
the expansions. Then, the seed sets for each list and each
editor which gave the highest R-precision on their respec-
tive expansions were collected for computing the maximum
upper bound on performance attainable by removing seeds
from the seed sets.

For evaluation purposes, each of the expanded lists was
filtered through a cosine similarity cutoff of 0.01. We used
simple heuristics such as lower casing and removing special
characters to merge any variants that might have occurred
in the expansions. The expansions were also cleared of any
seeds (or their variants) that might have been brought in by
the expansions to obtain a more accurate R-precision score.

6.1.1 Training the parameters
Two of our algorithms, prototype removals and MOC, re-

quire the number of seeds, n, to be removed as a parameter.
We empirically estimated the optimum number of seeds to
be removed using our development set from Section 5. First,
we used the editor generated seed sets to create candidate
seed sets by using the algorithms with n ranging from 1
through 9. Each of these candidate seed sets were expanded
and evaluated using R-precision. The value of n chosen was
the value that gave the best R-precision averaged over all
editors and all lists in the development set.

For the prototype removal algorithm, the number of seeds
to be removed was determined to be 3 and for the MOC
algorithm the size of the final seed set was determined to be
6, resulting in a removal of 4 seeds.

The clustering algorithm requires identifying the num-
ber of clusters to determine the cut in the dendrogram.
The optimum value for this parameter was again estimated
empirically over the development set. The original editor-
generated seed sets were clustered over all possible values
of k ranging from k = 2 to k = 9. The best value of k
was determined by choosing the clustering which gave us
the best average R-precision over all the editors and all the
lists in the development set. This value was determined to
be k = 2.

6.2 Overall Analysis
Table 2 lists the upper bound on R-precision and the aver-

age R-precision over all editors for each list, for the baseline
(the unmodified editor seed sets), the prototype removal al-
gorithm, clustering and MOC algorithms. Row MAX in
Table 2 lists the upper bound of R-precision when removing
seeds from the editor generated seed sets. This results in
a maximum average R-precision score of 0.548 over all lists
and all editors. Row USER lists the performance of the
unmodified seeds given by the editors for each list, averaged
over all editors, showing there is a maximum possible im-
provement in R-precision of 46%. This unmodified seed set
is used as a baseline against which all our algorithms are
compared.

Row PROTOTYPE shows the performance of the pro-
totype removal algorithm from Section 4.1. Simply removing
prototypes from the editors original seed sets can improve
the average quality of expansion by as much as 15%. Row
CLUSTER shows the performance of the clustering algo-
rithm from Section 4.2, which chooses the tightest cluster,
ignoring all other seeds. Again, like prototype removal, re-
moving ambiguous elements through clustering increases the
average R-precision over editors across all six lists, giving an
average improvement in R-precision of 19%. It shows that
considering and removing ambiguous elements from the seed
sets improves the performance of editorially generated seed
sets.

Row MOC describes the performance of the Minimum
overlap criterion method described in Section 4.3. This
method shows the highest performance out of all the three
methods described in section 4. The method provides an
improvement of 34% over the editors original seed sets, 12%
from the upper bound.

6.3 Intrinsic Analysis of Prototype Removals
and Clustering

The two techniques, prototype removal and clustering, are
simple and intuitive methods for improving the quality of
the seed set. Table 3 shows that both methods improve in
average R-precision compared with the baseline for all five
editors. The clustering method improves the seed sets of
the worst performing editor, E5 by upto 36%. The expert
editor E1*’s seed set shows the highest absolute value of
R-precision, of 0.534, however for an expert editor there is
a small gain in R-precision of only 9%. This expert editor
reported that he was careful not to give any ambiguous seed
instances for his seed set.

The above observation also holds true for the prototype
removal technique, which improves the average R-precision
over the baseline for all our five editors, with the R-precision
gain in the expert editor’s seed set being only 8%. Again,
this can be explained by the fact that the expert editor re-
ported that he was careful not to provide prototypical exam-
ples. All other non-expert editors have average R-precision
gains between 17.5-19%.

6.4 Intrinsic Analysis of MOC
Table 3 shows the performance of the MOC method on

a per-editor basis. MOC improves the average R-precision
over the six lists for all five editors. E1* is the expert edi-
tor whose unedited seed lists resulted in performance nearly
as good as the best random set (described in section 3). It
shows that MOC can improve the performance of even an
expert editor by as much as 22%. It is also the case that
the expert editor’s improved set has the maximum absolute
value of 0.601, the highest R-precision achieved among all
the editors, showing that when starting with good seed sets,



Table 3: R-precision analysis for each editor. E1* is our expert editor and all other editors are non-experts.
USER Elements Roman Emperors F1 Drivers Countries U.S. States CA Counties Avg. R-Prec
E1* 0.646 0.24 0.172 0.689 0.944 0.245 0.489
E2 0.499 0.136 0.189 0.365 0.840 0.001 0.338
E3 0.407 0.078 0.158 0.558 0.919 0.055 0.362
E4 0.457 0.171 0.146 0.446 0.774 0.023 0.336
E5 0.397 0.178 0.150 0.513 0.812 0.041 0.348
PROTOTYPE
E1* 0.677 0.215 0.163 0.693 0.949 0.482 0.529
E2 0.503 0.184 0.179 0.424 0.949 0.087 0.387
E3 0.522 0.185 0.144 0.680 0.927 0.157 0.435
E4 0.595 0.088 0.146 0.503 0.944 0.089 0.394
E5 0.546 0.264 0.142 0.419 0.920 0.203 0.415
CLUSTER
E1* 0.543 0.349 0.205 0.772 0.960 0.377 0.534
E2 0.569 0.243 0.258 0.484 0.880 0.033 0.411
E3 0.569 0.276 0.205 0.541 0.880 0.148 0.436
E4 0.388 0.250 0.211 0.602 0.860 0.049 0.393
E5 0.388 0.382 0.216 0.683 0.880 0.295 0.474
MOC
E1* 0.722 0.403 0.228 0.735 0.952 0.566 0.601
E2 0.593 0.333 0.252 0.517 0.952 0.189 0.472
E3 0.565 0.278 0.217 0.739 0.952 0.264 0.502
E4 0.657 0.062 0.238 0.601 0.952 0.170 0.446
E5 0.565 0.354 0.187 0.538 0.952 0.340 0.489

provided by an expert editor we can potentially improve
upon their original seed sets to generate candidate expan-
sions of even higher quality.

In terms of maximum gain in R-precison, E5, who has the
lowest average R-precision of all the editors, has an improve-
ment of close to 50%, showing that bad seed sets provided to
us by an editor can be significantly improved by considering
a subset which can best represent the concept the editor is
trying to expand.

MOC’s high performance compared to more intuitive al-
gorithms like prototype removal and clustering is partially
caused by some aspects of those algorithms that are fac-
tored into MOC, which tries to minimize semantic overlap
between the seed sets by minimizing the joint information
overlap. Seeds which are prototypical tend to overlap seman-
tically with almost all seeds in a seed set, by virtue of them
being prototypical examples of a class. This leads MOC to
choose seeds which are not prototypical of the class.

In MOC, the concept an editor is trying to expand is rep-
resented as a set of distributional features of all the seeds
in a seed set. Ambiguous words, even though have little se-
mantic overlap with other seeds in the seed sets, by virtue
of being ambiguous do not share a lot of highly informa-
tive distributional features with the concept. This results in
MOC tending to choose non-ambiguous seed instances from
the seed set. This assumption is verified when looking at
the selection process applied to the U.S. states list:

{California, Arizona, Nevada, New York,
New Jersey, Washington, Hawaii, Texas,
Montana, Indiana}

This seed set by editor E3 has ambiguous elements such as
Washington and New York which are both cities and states.
As expected, MOC does not choose any of the ambiguous el-
ements, instead selecting the following seeds {Indiana, New

Jersey, California, Arizona, Nevada, Montana}.
MOC also shows drammatic performance improvement for

the list California Counties with editor E5. Table 4 shows
the top-20 expansions when expanded using both the user’s
original seed set (Santa Clara, Contra Costa, Fresno, San
Mateo, San Joaquin, Stanislaus, Shasta, Humboldt, Mari-
posa, Riverside) and MOC’s subset (Stanislaus, Mariposa,
Contra Costa, San Joaquin, Shasta, San Mateo). MOC has
removed several seeds which are more known as cities than
counties. This avoids errors such as Mountain View, Sun-
nyvale and Bakersfield, introduced by seeds such as Santa
Clara which is also a city. Other errors such as Arroyo
Grande and Santa Rosa, which are county heads are avoided
in MOC’s expansion for a similar reason. Counties such as
Fresno and Mariposa are ambiguous, because they are also
county heads and MOC avoids them.

MOC, by considering both prototypicality and ambiguity
of seed instances, discovers a subset which can best repre-
sent the concept. Subsets chosen by MOC can improve the
quality of set expansion, even in the case of expert editors.

6.5 Error Analysis
All three methods show improvement in average R-precision

over the baseline scores for all five editors. Also, the MOC
algorithm improves the R-precision scores of each editor for
each list, with the exception of the list Roman Emperors
for editor E4. Upon inspection of E4’s seed set, we identi-
fied two sources of errors. The seed set contains the seed
Romulus, who is the first emperor of the Roman Republic.
However, in text, the seed Romulus is seen with contexts re-
lating to the founding of Rome, rather than contexts usually
associated with roman emperors. Also, the seed set contains
other well known emperors such as Nero and Augustus, with
a broad semantic space introducing ambiguity in our concept
representation.



Table 4: Set expansions for the semantic class Cal-
ifornia Counties using the original seeds from editor
E5 (USER) and the automatically modified seed set
using the MOC algorithm.

USER MOC
Los Angeles Madera
San Francisco Napa
San Luis Obispo Sonoma
San Bernardino Solano
Sacramento Tulare
Madera Alameda
Merced Yolo
Modesto Del Norte
San Diego Los Angeles
Bakersfield Merced
Visalia Yuba
Napa Colusa
Tulare Burlingame
Sunnyvale Plumas
Sonoma Tuolumne
Mountain View Tehama
Woodlake Siskiyou
Alameda Calaveras
Santa Rosa San Benito
Arroyo Grande Mendocino

As MOC tries to choose elements which have minimum se-
mantic overlap with each other, it chooses elements that are
infrequent in the corpus. Rare elements in seed sets result
in a loss of recall, and consequently loss in R-precision. This
is also true for prototype removal because it directly tries to
pick the least frequent elements in the seed set, causing loss
in R-precision. In this case, having prototypical examples
in the seed set is useful, when all the seeds are infrequent or
when most of the seeds in the seed set have covered a large
semantic space. A way to overcome this problem would be
to vary the number of seeds to be removed on a per-list basis.

The clustering algorithm which chooses the tightest clus-
ter also improves R-precision for all editors for all lists with
the exception of the list Elements for two editors E4 and E5.
Since for each list the tightest cluster is chosen, for the edi-
tor, the tightest cluster for editor E4 contained two elements
{Gold, Silver}, both precious metals. The other seeds in the
seed set, such as Iron, Oxygen, Carbon, Uranium, Mercury,
etc ... were conceptually different and could not form a co-
hesive cluster. Similar behavior can also be observed in the
case of editor E5, where the chosen cluster was {Calcium,
Potassium}, both conceptually different from the other el-
ements in the cluster such as {Nickel, Carbon, Hydrogen,
etc..}. These errors are caused primarily because simple
clustering cannot completely capture the notion of semantic
ambiguity.

7. CONCLUSIONS AND FUTURE WORK
In this paper we studied the impact that seed set com-

position has on the quality of set expansions. We showed
that the composition of seed sets can significantly affect the
performance of set expansion, by as much as 41%, using a
large set of random trials over an extensive evaluation. We
also showed that an average editor does not produce seed
sets that result in high quality expansions. In many cases,

their seed sets are worse than a randomly chosen seed set
from the same concept. We also asked an expert editor who
creates and curates large lists of entities to provide us with
seed sets of the same size. Seed sets generated by this expert
editor result in expansion performance nearly as good as the
best possible seed set.

We identified three important factors in seed set compo-
sition - prototypicality, amgiguity and coverage and showed
that considering these factors when creating seed sets leads
to higher quality expansions. We proposed three algorithms,
each one tackling a different factor affecting seed set compo-
sition. The first algorithm removes prototypes identified by
their relative frequency in text and we show that we can im-
prove the quality of expansion by as much as 15%. We pre-
sented a second algorithm, which removes ambiguous seeds
from a seed set through clustering analysis and then choos-
ing the tightest cluster. This algorithm improves the quality
of the expanded candidates by as much as 19%. The third
algorithm tackles the third factor of seed set composition -
Coverage. We showed that coverage can be seen as a prob-
lem in finding a subset of the seed set which best represents
the concept by minimizing the semantic overlap among the
seeds in the subset. Semantic overlap, can be seen as a case
of minimizing the information overlap between seeds and we
provided a simple greedy algorithm for minimizing the joint
information overlap between seeds. We discussed how this
algorithm balances between the prototypicality and ambi-
guity of seed instances and can choose subsets which can
improve the quality of seed sets by as much as 34%.

In the future we plan to investigate algorithms for seed
set refinement which are integrated with the set expansion
phase. Having access to the original seed set, while giving
higher preference to seeds selected by the algorithms dis-
cussed here could potentially improve the performance of
set expansion. We also plan to investigate why some con-
cepts are hard to learn and hard to expand, while others are
considerably simpler to learn and expand.

In conclusion, by considering the factors of seed set com-
positionality when generating seed sets, either manually in
the form of guidelines to the editors or automatically by
refining seed sets using methods discussed above, we can
substantially improve the quality set expansion systems.
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