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Abstract 

In this paper, we present Espresso, a 
weakly-supervised, general-purpose, 
and accurate algorithm for harvesting 
semantic relations. The main contribu-
tions are: i) a method for exploiting ge-
neric patterns by filtering incorrect 
instances using the Web; and ii) a prin-
cipled measure of pattern and instance 
reliability enabling the filtering algo-
rithm. We present an empirical com-
parison of Espresso with various state of 
the art systems, on different size and 
genre corpora, on extracting various 
general and specific relations. Experi-
mental results show that our exploita-
tion of generic patterns substantially 
increases system recall with small effect 
on overall precision. 

1 Introduction 

Recent attention to knowledge-rich problems 
such as question answering (Pasca and Harabagiu 
2001) and textual entailment (Geffet and Dagan 
2005) has encouraged natural language process-
ing researchers to develop algorithms for auto-
matically harvesting shallow semantic resources. 
With seemingly endless amounts of textual data 
at our disposal, we have a tremendous opportu-
nity to automatically grow semantic term banks 
and ontological resources. 

To date, researchers have harvested, with 
varying success, several resources, including 
concept lists (Lin and Pantel 2002), topic signa-
tures (Lin and Hovy 2000), facts (Etzioni et al. 
2005), and word similarity lists (Hindle 1990). 
Many recent efforts have also focused on extract-
ing semantic relations between entities, such as 

entailments (Szpektor et al. 2004), is-a (Ravi-
chandran and Hovy 2002), part-of (Girju et al. 
2006), and other relations. 

The following desiderata outline the properties 
of an ideal relation harvesting algorithm: 
• Performance: it must generate both high preci-

sion and high recall relation instances; 
• Minimal supervision: it must require little or no 

human annotation; 
• Breadth: it must be applicable to varying cor-

pus sizes and domains; and 
• Generality: it must be applicable to a wide va-

riety of relations (i.e., not just is-a or part-of). 
To our knowledge, no previous harvesting algo-
rithm addresses all these properties concurrently. 

In this paper, we present Espresso, a general-
purpose, broad, and accurate corpus harvesting 
algorithm requiring minimal supervision. The 
main algorithmic contribution is a novel method 
for exploiting generic patterns, which are broad 
coverage noisy patterns – i.e., patterns with high 
recall and low precision. Insofar, difficulties in 
using these patterns have been a major impedi-
ment for minimally supervised algorithms result-
ing in either very low precision or recall. We 
propose a method to automatically detect generic 
patterns and to separate their correct and incor-
rect instances. The key intuition behind the algo-
rithm is that given a set of reliable (high 
precision) patterns on a corpus, correct instances 
of a generic pattern will fire more with reliable 
patterns on a very large corpus, like the Web, 
than incorrect ones. Below is a summary of the 
main contributions of this paper: 
• Algorithm for exploiting generic patterns: 

Unlike previous algorithms that require signifi-
cant manual work to make use of generic pat-
terns, we propose an unsupervised Web-
filtering method for using generic patterns; and 

• Principled reliability measure: We propose a 
new measure of pattern and instance reliability 
which enables the use of generic patterns. 



Espresso addresses the desiderata as follows: 
• Performance: Espresso generates balanced 

precision and recall relation instances by ex-
ploiting generic patterns; 

• Minimal supervision: Espresso requires as in-
put only a small number of seed instances; 

• Breadth: Espresso works on both small and 
large corpora – it uses Web and syntactic ex-
pansions to compensate for lacks of redun-
dancy in small corpora; 

• Generality: Espresso is amenable to a wide 
variety of binary relations, from classical is-a 
and part-of to specific ones such as reaction 
and succession. 

Previous work like (Girju et al. 2006) that has 
made use of generic patterns through filtering has 
shown both high precision and high recall, at the 
expensive cost of much manual semantic annota-
tion. Minimally supervised algorithms, like 
(Hearst 1992; Pantel et al. 2004), typically ignore 
generic patterns since system precision dramati-
cally decreases from the introduced noise and 
bootstrapping quickly spins out of control. 

2 Relevant Work 

To date, most research on relation harvesting has 
focused on is-a and part-of. Approaches fall into 
two categories: pattern- and clustering-based. 

Most common are pattern-based approaches. 
Hearst (1992) pioneered using patterns to extract 
hyponym (is-a) relations. Manually building 
three lexico-syntactic patterns, Hearst sketched a 
bootstrapping algorithm to learn more patterns 
from instances, which has served as the model 
for most subsequent pattern-based algorithms. 

Berland and Charniak (1999) proposed a sys-
tem for part-of relation extraction, based on the 
(Hearst 1992) approach. Seed instances are used 
to infer linguistic patterns that are used to extract 
new instances. While this study introduces statis-
tical measures to evaluate instance quality, it re-
mains vulnerable to data sparseness and has the 
limitation of considering only one-word terms. 

Improving upon (Berland and Charniak 1999), 
Girju et al. (2006) employ machine learning al-
gorithms and WordNet (Fellbaum 1998) to dis-
ambiguate part-of generic patterns like “X’s Y” 
and “X of Y”. This study is the first extensive at-
tempt to make use of generic patterns. In order to 
discard incorrect instances, they learn WordNet-
based selectional restrictions, like “X(scene#4)’s 
Y(movie#1)”. While making huge grounds on 
improving precision/recall, heavy supervision is 
required through manual semantic annotations. 

Ravichandran and Hovy (2002) focus on scal-
ing relation extraction to the Web. A simple and 
effective algorithm is proposed to infer surface 
patterns from a small set of instance seeds by 
extracting substrings relating seeds in corpus sen-
tences. The approach gives good results on spe-
cific relations such as birthdates, however it has 
low precision on generic ones like is-a and part-
of. Pantel et al. (2004) proposed a similar, highly 
scalable approach, based on an edit-distance 
technique, to learn lexico-POS patterns, showing 
both good performance and efficiency. Espresso 
uses a similar approach to infer patterns, but we 
make use of generic patterns and apply refining 
techniques to deal with wide variety of relations. 

Other pattern-based algorithms include (Riloff 
and Shepherd 1997), who used a semi-automatic 
method for discovering similar words using a 
few seed examples, KnowItAll (Etzioni et al. 
2005) that performs large-scale extraction of 
facts from the Web, Mann (2002) who used part 
of speech patterns to extract a subset of is-a rela-
tions involving proper nouns, and (Downey et al. 
2005) who formalized the problem of relation 
extraction in a coherent and effective combinato-
rial model that is shown to outperform previous 
probabilistic frameworks. 

Clustering approaches have so far been ap-
plied only to is-a extraction. These methods use 
clustering algorithms to group words according 
to their meanings in text, label the clusters using 
its members’ lexical or syntactic dependencies, 
and then extract an is-a relation between each 
cluster member and the cluster label. Caraballo 
(1999) proposed the first attempt, which used 
conjunction and apposition features to build noun 
clusters. Recently, Pantel and Ravichandran 
(2004) extended this approach by making use of 
all syntactic dependency features for each noun. 
The advantage of clustering approaches is that 
they permit algorithms to identify is-a relations 
that do not explicitly appear in text, however 
they generally fail to produce coherent clusters 
from fewer than 100 million words; hence they 
are unreliable for small corpora. 

3 The Espresso Algorithm 

Espresso is based on the framework adopted in 
(Hearst 1992). It is a minimally supervised boot-
strapping algorithm that takes as input a few seed 
instances of a particular relation and iteratively 
learns surface patterns to extract more instances. 
The key to Espresso lies in its use of generic pat-
ters, i.e., those broad coverage noisy patterns that 



extract both many correct and incorrect relation 
instances. For example, for part-of relations, the 
pattern “X of Y” extracts many correct relation 
instances like “wheel of the car” but also many 
incorrect ones like “house of representatives”. 

The key assumption behind Espresso is that in 
very large corpora, like the Web, correct in-
stances generated by a generic pattern will be 
instantiated by some reliable patterns, where 
reliable patterns are patterns that have high preci-
sion but often very low recall (e.g., “X consists of 
Y” for part-of relations). In this section, we de-
scribe the overall architecture of Espresso, pro-
pose a principled measure of reliability, and give 
an algorithm for exploiting generic patterns. 

3.1 System Architecture 

Espresso iterates between the following three 
phases: pattern induction, pattern rank-
ing/selection, and instance extraction. 

The algorithm begins with seed instances of a 
particular binary relation (e.g., is-a) and then it-
erates through the phases until it extracts τ1 pat-
terns or the average pattern score decreases by 
more than τ2 from the previous iteration. In our 
experiments, we set τ1 = 5 and τ2 = 50%. 

For our tokenization, in order to harvest multi-
word terms as relation instances, we adopt a 
slightly modified version of the term definition 
given in (Justeson 1995), as it is one of the most 
commonly used in the NLP literature: 
 ((Adj|Noun)+|((Adj|Noun)*(NounPrep)?)(Adj|Noun)*)Noun 

Pattern Induction 

In the pattern induction phase, Espresso infers a 
set of surface patterns P that connects as many of 
the seed instances as possible in a given corpus. 
Any pattern learning algorithm would do. We 
chose the state of the art algorithm described in 
(Ravichandran and Hovy 2002) with the follow-
ing slight modification. For each input instance 
{x, y}, we first retrieve all sentences containing 
the two terms x and y. The sentences are then 
generalized into a set of new sentences Sx,y by 
replacing all terminological expressions by a 
terminological label, TR. For example: 
 “Because/IN HF/NNP is/VBZ a/DT weak/JJ acid/NN 
  and/CC x is/VBZ a/DT y” 

is generalized as: 
 “Because/IN TR is/VBZ a/DT TR and/CC x is/VBZ a/DT y” 

Term generalization is useful for small corpora to 
ease data sparseness. Generalized patterns are 
naturally less precise, but this is ameliorated by 
our filtering step described in Section 3.3. 

As in the original algorithm, all substrings 
linking terms x and y are then extracted from Sx,y, 
and overall frequencies are computed to form P. 

Pattern Ranking/Selection 

In (Ravichandran and Hovy 2002), a frequency 
threshold on the patterns in P is set to select the 
final patterns. However, low frequency patterns 
may in fact be very good. In this paper, instead of 
frequency, we propose a novel measure of pat-
tern reliability, rπ, which is described in detail in 
Section 3.2. 

Espresso ranks all patterns in P according to 
reliability rπ and discards all but the top-k, where 
k is set to the number of patterns from the previ-
ous iteration plus one. In general, we expect that 
the set of patterns is formed by those of the pre-
vious iteration plus a new one. Yet, new statisti-
cal evidence can lead the algorithm to discard a 
pattern that was previously discovered. 

Instance Extraction 

In this phase, Espresso retrieves from the corpus 
the set of instances I that match any of the pat-
terns in P. In Section 3.2, we propose a princi-
pled measure of instance reliability, rι, for 
ranking instances. Next, Espresso filters incor-
rect instances using the algorithm proposed in 
Section 3.3 and then selects the highest scoring m 
instances, according to rι, as input for the subse-
quent iteration. We experimentally set m=200. 

In small corpora, the number of extracted in-
stances can be too low to guarantee sufficient 
statistical evidence for the pattern discovery 
phase of the next iteration. In such cases, the sys-
tem enters an expansion phase, where instances 
are expanded as follows: 

Web expansion: New instances of the patterns 
in P are retrieved from the Web, using the 
Google search engine. Specifically, for each in-
stance {x, y}∈ I, the system creates a set of que-
ries, using each pattern in P instantiated with y. 
For example, given the instance “Italy, country” 
and the pattern “Y such as X”, the resulting 
Google query will be “country such as *”. New 
instances are then created from the retrieved Web 
results (e.g. “Canada, country”) and added to I. 
The noise generated from this expansion is at-
tenuated by the filtering algorithm described in 
Section 3.3. 

Syntactic expansion: New instances are cre-
ated from each instance {x, y}∈ I by extracting 
sub-terminological expressions from x corre-
sponding to the syntactic head of terms. For ex-



ample, the relation “new record of a criminal 
conviction part-of FBI report” expands to: “new 
record part-of FBI report”, and “record part-of 
FBI report”. 

3.2 Pattern and Instance Reliability 

Intuitively, a reliable pattern is one that is both 
highly precise and one that extracts many in-
stances. The recall of a pattern p can be approxi-
mated by the fraction of input instances that are 
extracted by p. Since it is non-trivial to estimate 
automatically the precision of a pattern, we are 
wary of keeping patterns that generate many in-
stances (i.e., patterns that generate high recall but 
potentially disastrous precision). Hence, we de-
sire patterns that are highly associated with the 
input instances. Pointwise mutual information 
(Cover and Thomas 1991) is a commonly used 
metric for measuring this strength of association 
between two events x and y: 
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We define the reliability of a pattern p, rπ(p), 

as its average strength of association across each 
input instance i in I, weighted by the reliability of 
each instance i: 
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where rι(i) is the reliability of instance i (defined 
below) and maxpmi is the maximum pointwise 
mutual information between all patterns and all 
instances. rπ(p) ranges from [0,1]. The reliability 
of the manually supplied seed instances are rι(i) 
= 1. The pointwise mutual information between 
instance i = {x, y} and pattern p is estimated us-
ing the following formula: 
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where |x, p, y| is the frequency of pattern p in-
stantiated with terms x and y and where the aster-
isk (*) represents a wildcard. A well-known 
problem is that pointwise mutual information is 
biased towards infrequent events. We thus multi-
ply pmi(i, p) with the discounting factor sug-
gested in (Pantel and Ravichandran 2004). 

Estimating the reliability of an instance is 
similar to estimating the reliability of a pattern. 
Intuitively, a reliable instance is one that is 
highly associated with as many reliable patterns 
as possible (i.e., we have more confidence in an 

instance when multiple reliable patterns instanti-
ate it.) Hence, analogous to our pattern reliability 
measure, we define the reliability of an instance 
i, rι(i), as: 
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where rπ(p) is the reliability of pattern p (defined 
earlier) and maxpmi is as before. Note that rι(i) 
and rπ(p) are recursively defined, where rι(i) = 1 
for the manually supplied seed instances. 

3.3 Exploiting Generic Patterns 

Generic patterns are high recall / low precision 
patterns (e.g, the pattern “X of Y” can ambigu-
ously refer to a part-of, is-a and possession rela-
tions). Using them blindly increases system 
recall while dramatically reducing precision. 
Minimally supervised algorithms have typically 
ignored them for this reason. Only heavily super-
vised approaches, like (Girju et al. 2006) have 
successfully exploited them. 

Espresso’s recall can be significantly in-
creased by automatically separating correct in-
stances extracted by generic patterns from 
incorrect ones. The challenge is to harness the 
expressive power of the generic patterns while 
remaining minimally supervised. 

The intuition behind our method is that in a 
very large corpus, like the Web, correct instances 
of a generic pattern will be instantiated by many 
of Espresso’s reliable patterns accepted in P. Re-
call that, by definition, Espresso’s reliable pat-
terns extract instances with high precision (yet 
often low recall). In a very large corpus, like the 
Web, we assume that a correct instance will oc-
cur in at least one of Espresso’s reliable pattern 
even though the patterns’ recall is low. Intui-
tively, our confidence in a correct instance in-
creases when, i) the instance is associated with 
many reliable patterns; and ii) its association 
with the reliable patterns is high. At a given Es-
presso iteration, where PR represents the set of 
previously selected reliable patterns, this intui-
tion is captured by the following measure of con-
fidence in an instance i = {x, y}: 
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where T is the sum of the reliability scores rπ(p) 
for each pattern p ∈ PR, and 
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where pointwise mutual information between 
instance i and pattern p is estimated with Google 
as follows: 
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An instance i is rejected if S(i) is smaller than 
some threshold τ. 

Although this filtering may also be applied to 
reliable patterns, we found this to be detrimental 
in our experiments since most instances gener-
ated by reliable patterns are correct. In Espresso, 
we classify a pattern as generic when it generates 
more than 10 times the instances of previously 
accepted reliable patterns. 

4 Experimental Results 

In this section, we present an empirical compari-
son of Espresso with three state of the art sys-
tems on the task of extracting various semantic 
relations. 

4.1 Experimental Setup 

We perform our experiments using the following 
two datasets: 
• TREC: This dataset consists of a sample of 

articles from the Aquaint (TREC-9) newswire 
text collection. The sample consists of 
5,951,432 words extracted from the following 
data files: AP890101 – AP890131, AP890201 
– AP890228, and AP890310 – AP890319. 

• CHEM: This small dataset of 313,590 words 
consists of a college level textbook of introduc-
tory chemistry (Brown et al. 2003). 

Each corpus is pre-processed using the Alembic 
Workbench POS-tagger (Day et al. 1997). 

Below we describe the systems used in our 
empirical evaluation of Espresso. 
• RH02: The algorithm by Ravichandran and 

Hovy (2002) described in Section 2. 
• GI03: The algorithm by Girju et al. (2006) de-

scribed in Section 2. 

• PR04: The algorithm by Pantel and Ravi-
chandran (2004) described in Section 2. 

• ESP-: The Espresso algorithm using the pat-
tern and instance reliability measures, but 
without using generic patterns. 

• ESP+: The full Espresso algorithm described 
in this paper exploiting generic patterns. 

For ESP+, we experimentally set τ from Section 
3.3 to τ = 0.4 for TREC and τ = 0.3 for CHEM 
by manually inspecting a small set of instances. 

Espresso is designed to extract various seman-
tic relations exemplified by a given small set of 
seed instances. We consider the standard is-a and 
part-of relations as well as the following more 
specific relations: 
• succession: This relation indicates that a person 

succeeds another in a position or title. For ex-
ample, George Bush succeeded Bill Clinton 
and Pope Benedict XVI succeeded Pope John 
Paul II. We evaluate this relation on the 
TREC-9 corpus. 

• reaction: This relation occurs between chemi-
cal elements/molecules that can be combined 
in a chemical reaction. For example, hydrogen 
gas reacts-with oxygen gas and zinc reacts-with 
hydrochloric acid. We evaluate this relation on 
the CHEM corpus. 

• production: This relation occurs when a proc-
ess or element/object produces a result1. For 
example, ammonia produces nitric oxide. We 
evaluate this relation on the CHEM corpus. 

For each semantic relation, we manually ex-
tracted a small set of seed examples. The seeds 
were used for both Espresso as well as RH02. 
Table 1 lists a sample of the seeds as well as 
sample outputs from Espresso. 

4.2 Precision and Recall 

We implemented the systems outlined in Section 
4.1, except for GI03, and applied them to the 
                                                      

1 Production is an ambiguous relation; it is intended to be 
a causation relation in the context of chemical reactions. 

Table 1. Sample seeds used for each semantic relation and sample outputs from Espresso. The number 
in the parentheses for each relation denotes the total number of seeds used as input for the system. 

 Is-a (12) Part-Of (12) Succession (12) Reaction (13) Production (14) 

Seeds 

wheat :: crop 
George Wendt :: star 
nitrogen :: element 
diborane :: substance 

leader :: panel 
city :: region 
ion :: matter 
oxygen :: water 

Khrushchev :: Stalin 
Carla Hills :: Yeutter 
Bush :: Reagan 
Julio Barbosa :: Mendes 

magnesium :: oxygen 
hydrazine :: water 
aluminum metal :: oxygen 
lithium metal :: fluorine gas 

bright flame :: flares 
hydrogen :: metal hydrides 
ammonia :: nitric oxide 
copper :: brown gas 

Es-
presso 

Picasso :: artist 
tax :: charge 
protein :: biopolymer 
HCl :: strong acid 

trees :: land 
material :: FBI report 
oxygen :: air 
atom :: molecule 

Ford :: Nixon 
Setrakian :: John Griesemer 
Camero Cardiel :: Camacho
Susan Weiss :: editor 

hydrogen :: oxygen 
Ni :: HCl 
carbon dioxide :: methane 
boron :: fluorine 

electron :: ions 
glycerin :: nitroglycerin 
kidneys :: kidney stones 
ions :: charge 

 



Table 8. System performance: CHEM/production.

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 197 57.5% 0.80 
ESP- 196 72.5% 1.00 
ESP+ 1676 55.8% 6.58 
 

TREC and CHEM datasets. For each output set, 
per relation, we evaluate the precision of the sys-
tem by extracting a random sample of instances 
(50 for the TREC corpus and 20 for the CHEM 
corpus) and evaluating their quality manually 
using two human judges (a total of 680 instances 
were annotated per judge). For each instance, 
judges may assign a score of 1 for correct, 0 for 
incorrect, and ½ for partially correct. Example 
instances that were judged partially correct in-
clude “analyst is-a manager” and “pilot is-a 
teacher”. The kappa statistic (Siegel and Castel-
lan Jr. 1988) on this task was Κ = 0.692. The pre-
cision for a given set of instances is the sum of 
the judges’ scores divided by the total instances. 

Although knowing the total number of correct 
instances of a particular relation in any non-
trivial corpus is impossible, it is possible to com-
pute the recall of a system relative to another sys-
tem’s recall. Following (Pantel et al. 2004), we 
define the relative recall of system A given sys-
tem B, RA|B, as: 
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where RA is the recall of A, CA is the number of 
correct instances extracted by A, C is the (un-
known) total number of correct instances in the 
corpus, PA is A’s precision in our experiments, 

                                                      
2 The kappa statistic jumps to Κ = 0.79 if we treat partially 
correct classifications as correct. 

and |A| is the total number of instances discov-
ered by A. 

Tables 2 – 8 report the total number of in-
stances, precision, and relative recall of each sys-
tem on the TREC-9 and CHEM corpora 3 4 . The 
relative recall is always given in relation to the 
ESP- system. For example, in Table 2, RH02 has 
a relative recall of 5.31 with ESP-, which means 
that the RH02 system outputs 5.31 times more 
correct relations than ESP- (at a cost of much 
lower precision). Similarly, PR04 has a relative 
recall of 0.23 with ESP-, which means that PR04 
outputs 4.35 fewer correct relations than ESP- 
(also with a smaller precision). We did not in-
clude the results from GI03 in the tables since the 
system is only applicable to part-of relations and 
we did not reproduce it. However, the authors 
evaluated their system on a sample of the TREC-
9 dataset and reported 83% precision and 72% 
recall (this algorithm is heavily supervised.) 

                                                      
* Because of the small evaluation sets, we estimate the 
95% confidence intervals using bootstrap resampling to be 
in the order of ± 10-15% (absolute numbers). 
† Relative recall is given in relation to ESP-. 

Table 2. System performance: TREC/is-a. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 57,525 28.0% 5.31 
PR04 1,504 47.0% 0.23 
ESP- 4,154 73.0% 1.00 
ESP+ 69,156 36.2% 8.26 

Table 4. System performance: TREC/part-of. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 12,828 35.0% 42.52 
ESP- 132 80.0% 1.00 
ESP+ 87,203 69.9% 577.22 

Table 3. System performance: CHEM/is-a. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 2556 25.0% 3.76 
PR04 108 40.0% 0.25 
ESP- 200 85.0% 1.00 
ESP+ 1490 76.0% 6.66 

Table 5. System performance: CHEM/part-of. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 11,582 33.8% 58.78 
ESP- 111 60.0% 1.00 
ESP+ 5973 50.7% 45.47 

Table 7. System performance: CHEM/reaction. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 6,083 30% 53.67 
ESP- 40 85% 1.00 
ESP+ 3102 91.4% 89.39 

Table 6. System performance: TREC/succession.

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 49,798 2.0% 36.96 
ESP- 55 49.0% 1.00 
ESP+ 55 49.0% 1.00 



In all tables, RH02 extracts many more rela-
tions than ESP-, but with a much lower precision, 
because it uses generic patterns without filtering. 
The high precision of ESP- is due to the effective 
reliability measures presented in Section 3.2. 

4.3 Effect of Generic Patterns 

Experimental results, for all relations and the two 
different corpus sizes, show that ESP- greatly 
outperforms the other methods on precision. 
However, without the use of generic patterns, the 
ESP- system shows lower recall in all but the 
production relation. 

As hypothesized, exploiting generic patterns 
using the algorithm from Section 3.3 substan-
tially improves recall without much deterioration 
in precision. ESP+ shows one to two orders of 
magnitude improvement on recall while losing 
on average below 10% precision. The succession 
relation in Table 6 was the only relation where 
Espresso found no generic pattern. For other re-
lations, Espresso found from one to five generic 
patterns. Table 4 shows the power of generic pat-
terns where system recall increases by 577 times 
with only a 10% drop in precision. In Table 7, we 
see a case where the combination of filtering 
with a large increase in retrieved instances re-
sulted in both higher precision and recall. 

In order to better analyze our use of generic 
patterns, we performed the following experiment. 

For each relation, we randomly sampled 100 in-
stances for each generic pattern and built a gold 
standard for them (by manually tagging each in-
stance as correct or incorrect). We then sorted the 
100 instances according to the scoring formula 
S(i) derived in Section 3.3 and computed the av-
erage precision, recall, and F-score of each top-K 
ranked instances for each pattern5. Due to lack of 
space, we only present the graphs for four of the 
22 generic patterns: “X is a Y” for the is-a rela-
tion of Table 2, “X in the Y” for the part-of rela-
tion of Table 4, “X in Y” for the part-of relation 
of Table 5, and “X and Y” for the reaction rela-
tion of Table 7. Figure 1 illustrates the results. 

In each figure, notice that recall climbs at a 
much faster rate than precision decreases. This 
indicates that the scoring function of Section 3.3 
effectively separates correct and incorrect in-
stances. In Figure 1a), there is a big initial drop 
in precision that accounts for the poor precision 
reported in Table 1. 

Recall that the cutoff points on S(i) were set to 
τ = 0.4 for TREC and τ = 0.3 for CHEM. The 
figures show that this cutoff is far from the 
maximum F-score. An interesting avenue of fu-
ture work would be to automatically determine 
the proper threshold for each individual generic 
pattern instead of setting a uniform threshold. 
                                                      

5 We can directly compute recall here since we built a 
gold standard for each set of 100 samples. 

Figure 1. Precision, recall and F-score curves of the Top-K% ranking instances of patterns “X is a Y” 
(TREC/is-a), “X in Y” (TREC/part-of), “X in the Y” (CHEM/part-of), and “X and Y” (CHEM/reaction). 
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5 Conclusions 

We proposed a weakly-supervised, general-
purpose, and accurate algorithm, called Espresso, 
for harvesting binary semantic relations from raw 
text. The main contributions are: i) a method for 
exploiting generic patterns by filtering incorrect 
instances using the Web; and ii) a principled 
measure of pattern and instance reliability ena-
bling the filtering algorithm. 

We have empirically compared Espresso’s 
precision and recall with other systems on both a 
small domain-specific textbook and on a larger 
corpus of general news, and have extracted sev-
eral standard and specific semantic relations: is-
a, part-of, succession, reaction, and production. 
Espresso achieves higher and more balanced per-
formance than other state of the art systems. By 
exploiting generic patterns, system recall sub-
stantially increases with little effect on precision. 

There are many avenues of future work both in 
improving system performance and making use 
of the relations in applications like question an-
swering. For the former, we plan to investigate 
the use of WordNet to automatically learn selec-
tional constraints on generic patterns, as pro-
posed by (Girju et al. 2006). We expect here that 
negative instances will play a key role in deter-
mining the selectional restrictions. 

Espresso is the first system, to our knowledge, 
to emphasize concurrently performance, minimal 
supervision, breadth, and generality. It remains 
to be seen whether one could enrich existing on-
tologies with relations harvested by Espresso, 
and it is our hope that these relations will benefit 
NLP applications. 
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