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Abstract 

As with many large organizations, the Govern-
ment's data is split in many different ways and is col-
lected at different times by different people. The result-
ing massive data heterogeneity means that government 
staff cannot effectively locate, share, or compare data 
across sources, let alone achieve computational data 
interoperability. The premise of our research is that it 
is possible to significantly reduce the amount of man-
ual labor required in database wrapping and integra-
tion by automatically learning mappings in the data. 
In this research, we applied statistical algorithms to 
discover column correspondences across environ-
mental databases. We have seen particular success in 
an information theoretic model, which we call SIfT, 
which performs data-driven column alignments. We 
have applied SIfT to mapping Santa Barbara and Ven-
tura County Air Pollution Control Districts’ 2001 and 
2002 emissions inventory databases with the Califor-
nia Air Resources Board statewide inventory data-
base. The application of SIfT yielded 75% precision 
and 72.2% recall on the column alignment task. On a 
task of integrating new district data with the statewide 
database, we achieved 55% accuracy for Ventura 
County and 59% accuracy for Santa Barbara County. 

1. Introduction 

Due to the wide range of geographic scales and 
complex tasks that the Government must administer, 
its data is split in many different ways and is collected 
at different times by different agencies. The resulting 
massive data heterogeneity means one cannot effec-
tively locate, share, or compare data across sources, let 
alone achieve computational data interoperability. A 
case in point is the California Air Resources Board 
(CARB), which is faced with the challenge of integrat-
ing the emissions inventory databases belonging to 

California's 35 air quality management districts to 
create a state inventory.  This inventory must be sub-
mitted annually to the US EPA which, in turn, must 
perform quality assurance tests on these inventories 
and integrate them into a national emissions inventory 
for use in tracking the effects of national air quality 
policies. 

To date, most approaches to wrap data collections, 
or even to create mappings across comparable data-
sets, require manual effort. Despite some promising 
recent work, the automated creation of such mappings 
is still in its infancy, since equivalences and differ-
ences manifest themselves at all levels, from individ-
ual data values through metadata to the explanatory 
text surrounding the data collection as a whole. 

Viewing the data mapping problem as a variant of 
the cross-language mapping problem in Machine 
Translation, we employed statistical text alignment 
and clustering algorithms developed in Natural Lan-
guage Processing to discover correspondences across 
comparable datasets. In this paper, we present an in-
formation theoretic model, which we call SIfT (Sig-
nificance Information for Translation), that performs 
data-driven column alignment. The key to our ap-
proach is to identify the most informative data ele-
ments and then match data sources that share these 
informative elements. For example, we expect that the 
word “the” will be present in many different columns. 
However, consider some word, like “carbon”, which 
occurs in very few columns. A random pair of col-
umns from two data sources that both contain the data 
element “the” are intuitively not as similar as if both 
columns contained the data element “carbon”. Our 
model automatically detects that “the” is less informa-
tive than “carbon” and will consequently assign a 
higher similarity to two columns that share only “car-
bon” rather than only “the”. 

This work has the potential to significantly reduce 
the amount of human work involved in creating sin-
gle-point access to multiple heterogeneous databases. 



The remainder of this paper is organized as follows. In 
the next section, we review related work in database 
alignment. Section 3 describes the environmental da-
tabases that we use as a testbed for alignment and in 
Section 4 we present our information-theoretic model 
for alignment. Our experimental results are presented 
in Section 4.4. Finally we conclude with a discussion 
and future work. 

2. Related work 

A lack of standardization has made it very difficult 
to integrate various data sources. Integration and rec-
onciliation of data across non-homogeneous databases 
is an old but unsolved and ever-growing problem. 
Some mechanism is required to standardize data types, 
reconcile slightly different views, and enable sharing. 

For textual data, the information retrieval approach 
exemplified in web search engines such as Google and 
Yahoo! works reasonably well to find exact and close 
matches (around 40% precision & recall over the past 
decade, determined at the annual TREC1 conferences). 

For conventional databases, however, search en-
gines are inappropriate. Instead, two approaches are 
possible. Either one can build a central data model that 
integrates the specialized metadata for each database, 
or one can create direct mappings across the data 
(cells, columns, rows, etc.) of the databases them-
selves. Both approaches are difficult. With regard to 
the former, various methods have been developed. The 
“global-as” view method [2][3] assumes that the cen-
tral model is complete, but that local databases may 
deviate from it; access is via the central model. This 
model requires serious effort to extend. In contrast the 
“local-as” view method [8] assumes that the central 
model is incomplete, simply narrowing the sources to 
be further searched, which may require tedious addi-
tional search effort. In contrast, the “ontology method” 
uses a single overarching super-metadata model (the 
ontology) into which all databases’ metadata descrip-
tions are subordinated hierarchically [1][6]. 

The second general approach, creating mappings 
across individual (subsets of) data, is impossible to 
bring about for real-sized data collections unless  
(semi-) automated methods are used to find the map-
pings. Schema-based matching algorithms [13] align 
databases by matching the meta-data available in the 
databases (e.g., two tables with column name zip_code 
are aligned; most approaches will also match columns 
labeled zip_code and zip). However, since there is 
often no standardized naming scheme for meta-data, 
                                                 
1 The Text REtrieval Conference (TREC) provides the infra-

structure necessary for large-scale evaluation of text 
within the information retrieval community. 

schema-based methods often fail. Instance-based 
matching algorithms align databases using the actual 
data [5]. Such data driven methods typically fail when 
different columns share a common domain (e.g., busi-
ness vs. residence phone numbers) or when matching 
columns that exhibit different encodings (e.g., a phone 
number field stored as a text string in one database and 
stored as a numerical field in another). Kang and 
Naughton [7], whose work most resembles ours, pro-
pose an information-theoretic model to match un-
aligned columns after schema- and instance-based 
matching fails. Given two columns A.x and B.x that 
are aligned, the model computes the association 
strength between column A.x with each other column 
in A and column B.x and each other column in B. The 
assumption is that the highly associated columns from 
A and B are the best candidates for alignment. In this 
paper, we adopt a similar information-theoretic model, 
but for instance-based matching. Instead of matching 
highly associated columns, which requires seed align-
ments, we find the data elements that are most highly 
associated to each column and then match columns 
that share these important data elements 

3. Environmental databases 

We are working with the following set of domain 
data. Emissions inventories are being provided by staff 
at the California Air Resources Board (CARB) in Sac-
ramento, who annually integrate the emissions inven-
tory databases belonging to California's 35 Air Quality 
Management Districts (AQMD) to create a state in-
ventory. This inventory must be submitted annually to 
the US EPA which, in turn, must perform quality as-
surance tests on these inventories and integrate them 
into a national emissions inventory for use in tracking 
the effects of national air quality policies. 

To deliver their annual emissions data submittal to 
CARB, air districts have to manually reformat their 
data according to the specifications of CARB’s emis-
sion inventory database called California Emission 
Inventory Development and Reporting System (CEI-
DARS). Every time the CEIDARS data dictionary is 
revised (as has happened several times recently, for 
example in 2002), work is required on the part of 
AQMD staff to translate emissions data into the new 
format. Likewise, when CARB provides emissions 
data to US EPA’s National Emission Inventory (NEI), 
significant effort is required by CARB staff to trans-
late data into the required format. 

Our testbed for this research consists of the 2001 
and 2002 Santa Barbara County Air Pollution Control 
District (SBCAPCD) and Ventura County Air Pollu-
tion Control District (VCAPCD) emissions invento-
ries, two of the 35 California air districts. 



4. Data-driven alignment 

The key to our approach is to first identify, using an 
information-theoretic model, the most informative 
data elements and then match data sources that share 
these informative elements. For example, in our case 
study of matching SBCAPCD and CARB schemas, 
since the source data is from Santa Barbara County, 
we expect that many of the columns in SBCAPCD 
will contain the word “Santa Barbara” (e.g., factory 
names, locations, addresses, etc.) However, only one 
column contains the word “Wingerden.” Therefore, a 
random pair of columns from SBCAPCD and CARB 
that both contain the data element “Santa Barbara” are 
intuitively not as similar as if both columns contained 
the data element “Wingerden.” Our model automati-
cally detects that “Santa Barbara” is less informative 
than “Wingerden” and will consequently assign a 
higher similarity to two columns that share only 
“Wingerden” rather than only “Santa Barbara.” 

4.1. Information theoretic model 

Informative elements are measured in SIfT using an 
information theoretic model called mutual informa-
tion. Similar columns are discovered using a clustering 
algorithm called CBC [9]. 

In any clustering application, the critical step is rep-
resenting the data such that elements group together 
according to the desired output. For example, if we 
want to cluster medical patients according to their pos-
sible diseases, we might represent them by their 
height, weight, age, gender, whether they smoke or 
not, etc.; we would not, however, represent them by 
their favorite board game or favorite movie since with 
this representation we would likely group the patients 
according to their entertainment preferences. 

The representation of an element is often called a 
feature vector (or vector space model). Each feature is 
simply a measurement of the element. For example, in 
clustering data points on a 3-dimentional graph, we 
would represent each point using three features: the x, 
y, and z coordinates. These three measurements com-
pletely describe the points. 

4.1.1. Feature representation 

In aligning inter-database columns s and t, we as-
sume that s and t contain similar but not necessarily 
identical fields (accounting for noise and discrepancies 
in the data). One representation for columns is simply 
the data fields they contain. Consider the following 
database columns taken from two databases S and A: 

 
S.phone.number: 

310-555-6789, 310-555-0987,  
780-433-9393, … 

A.area: 
310, 310, 780, … 

A.ph: 
555-6789, 555-0987, 433-9393, … 

We could represent these columns using their field 
values with a frequency of occurrence as measure-
ment. For the above example, the feature vectors using 
this representation would be: 

S.phone.number: 
310-555-6789 1 
310-555-0987 1 
780-433-9393 1 

A.area: 
310 2 
780 1 

A.ph: 
555-6789 1 
555-0987 1 
433-9393 1 

Notice that none of these features overlap and con-
sequently a clustering algorithm would not discover 
any similarity between the columns. In this research, 
we enrich the feature space by classifying data col-
umns within several feature domains (e.g., zip code, 
phone number, state, positive integer, …) Once a col-
umn is classified within a particular feature domain, 
the feature types associated with that domain are ex-
tracted for the column’s feature vector (e.g., zip5 – the 
first five digits of a zip code, zip4 – the last four digits 
of a nine-digit zip code, area – the area code of a 
phone number, exch – the 3-digit phone number ex-
change, phone – the seven-digit local phone number, 
ext – the extension of any digits after a 10-digit phone 
number). We also add domain specific feature do-
mains. We implemented a total of 20 feature domains. 

The algorithm we use for recognizing these do-
mains simply searches for patterns that describe the 
domain. For example, a 10-digit phone number is rec-
ognized if the first three digits are a known area code, 
the fourth digit is between [2-9], and the rest of the 
field is numeric. If our patterns do not fire on a par-
ticular column (e.g., a column containing international 
phone numbers), then the catch-all Text feature do-
main will always fire. 

We allow the user of the system to decide which 
feature domains and associated feature types are active 
for any given alignment. Suppose a column is identi-
fied as a phone number and we decide to extract fea-
ture types area and phone for all phone numbers. Then 
for each field such as “310-555-6789”, the system 
extracts two features with frequency 1: 

area:310  1 
phone:555-6789  1 



Similarly, for fields such as “555-6789”, we extract 
a single feature: 

phone:555-6789  1 

Now, we see some overlap between the columns 
S.phone.number and A.ph from the previous section. A 
clustering algorithm could therefore discover a simi-
larity between the two columns. 

4.1.2. Mutual-information vector-space model 

Representing data for clustering requires both a fea-
ture representation and a measurement of the features. 
We now describe our model for measuring the feature 
types described in the previous section. 

Above, we measured each feature by its frequency 
of occurrence. However, certain features are more 
informative than others. For example, the common 
word ‘the’ will be present in many text strings. Two 
strings that happen to contain the word ‘the’ does not 
indicate as much similarity as if they contained an 
uncommon word such as ‘carbon’. 

Pointwise mutual information is commonly used to 
measure the association strength between two events 
[4]. It essentially measures the amount of information 
one event gives about another. For example, knowing 
that a column contains the word ‘the’ is not informa-
tive of the contents of that column (because the is 
common across many columns). Conversely, if very 
few columns contain the word carbon, then that word 
is an informative feature (i.e. if columns p and q from 
different databases happen to contain carbon, then 
they are more likely to be aligned than if they shared 
the word the). 

The pointwise mutual information between two 
events x and y is given by: 

( ) ( )
( ) ( )yPxP

yxPyxmi ,log, =  

Mutual information is high when x and y occur to-
gether more often than by chance. Mutual information 
compares two models (using KL-divergence) for pre-
dicting the co-occurrence of x and y: one is the MLE 
(maximum-likelihood estimation) of the joint prob-
ability of x and y and the other is some baseline model. 
In the above formula, the baseline model assumes that 
x and y are independent. Note that in information the-
ory, mutual information refers to the mutual informa-
tion between two random variables rather than be-
tween two events as used in this paper. The mutual 
information between two random variables X and Y is 
given by: 
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( ) ( )∑∑
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The mutual information between two random vari-
ables is the weighted average (expectation) of the 
pointwise mutual information between all possible 
combinations of events of the two variables. 

For each element (column) e, we first construct a 
frequency count vector C(e) = (ce1, ce2, …, cem), where 
m is the total number of features and cef is the fre-
quency count of feature f occurring in element e. Here, 
cef is the number of times column e contained a feature 
f. For example, in column e = A.area from Section 
4.1.1, one feature is area:310 with count 2. 

We then construct a mutual information vector 
MI(e) = (mie1, mie2, …, miem) for each column e, where 
mief is the pointwise mutual information between col-
umn e and feature f, which is defined as: 
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4.2. Similarity metric 

To cluster elements, we need a measure of similar-
ity (or distance) between them. We construct a matrix 
containing the similarity between each pair of columns 
ei and ej using the cosine coefficient of their mutual 
information vectors [11]: 
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This measures the cosine of the angle between two 
mutual information vectors. A similarity of 0 indicates 
orthogonal vectors whereas a similarity of 1 indicates 
identical vectors. For two very similar elements, their 
vectors will be very close and the cosine of their angle 
will approach 1. A nice property of the cosine metric 
is that it is not very sensitive to 0-valued features. 
Hence, given a column containing all California EPA 
facilities and another containing only Santa Barbara 
facilities, cosine will find a similarity even though all 
non-Santa-Barbara facilities will have frequency 0 in 



the second column. In other words, the absence of a 
matching feature is not as strong an indicator of dis-
similarity as the presence of one is an indicator of 
similarity. Other measures like the Euclidean distance 
do not make this distinction. 

4.3. Alignment 

Applying the clustering algorithm described in [9], 
SIfT generates a similarity matrix containing the co-
sine similarity between each pair of columns across 
databases. For each column from source database A, 
we simply align it with its most similar columns from 
target database S such that the similarity between the 
pair of columns is above a certain threshold θ. 

4.4. Scalability 

Computing the similarity matrix described in Sec-
tion 4.2 is daunting for large element and feature 
spaces. The complexity of a brute force algorithm is 
O(n2f), where n is the number of elements and f is the 
feature space. 

However, a simple heuristic drawing on the proper-
ties of mutual information drastically reduces the ac-
tual running time of the algorithm. For each element e, 
we must compute its similarity with every other ele-
ment by comparing their feature vectors. By sorting 
the features of element e in decreasing order of mutual 
information and applying a conservative minimum 
threshold (e.g., we used a threshold of 0.5 in our ex-
periments), we can reduce the feature vector to only 
the most informative features. Using reverse indexing 
on the features, we need only compare e with the ele-
ments, E, which share at least one of e’s features. Re-
member that a feature of an element will have high 
mutual information only if that feature does not co-
exist with many other elements. Consequently, the size 
of E will be much smaller than the total number of 
elements n. 

We use the above heuristic in our system. Another 
option is to use randomized algorithms, which have 
been shown to reduce the complexity of cosine from 
O(n2f) to O(nf); see [10] for details. 

5. Evaluation 

Given two heterogeneous databases, the goal of our 
task is to automatically generate the same alignment 
that a human expert would generate. A step forward is 
to greatly reduce the number of alignment decisions 
considered by a human expert. 

We evaluate our system on environmental data-
bases. In the next section, we describe our experimen-
tal setup. In Section 5.2, we measure the precision and 
recall of SIfT alignments against a manually con-
structed gold standard as well as measure the reduc-
tion in human effort to generate a manual alignment. 
Then, in Section 5.3, we measure SIfT’s accuracy in 
automatically integrating 2002 California air quality 
districts’ data with the California-wide emissions in-
ventory database using historical data. 

5.1. Experimental setup 

The source material we use for mappings, in the 
form of individual data sets, metadata schemas, etc., 
was provided by the Santa Barbara County Air Pollu-
tion Control District (SBCAPCD) and Ventura County 
Air Pollution Control District (VCAPCD). Both pro-
vided a complete archive of the emissions inventory it 
conducted for 2001 and 2002, covering facilities, de-
vices, processes, permitting history, as well as criteria 
and toxic emissions. Mapping target material, includ-
ing an integrated database and its metadata schema, 
was provided by the California Air Resources Board 
(CARB), in the form of the statewide emissions inven-
tories for 2001 and 2002. 

To be of practical use to our governmental partners, 
our challenge lies both in the post-analysis of a data 
transfer between district and state and on integrating 
new data as it becomes available each year. This is a 
challenge since the data formats may change on both 
sides (the collectors and the integrators). Since, how-
ever, changes year by year are not likely to be large, 
we can try to reconcile the possibly divergent evolu-
tions automatically, thereby closing the loop by auto-
matically generating the data integration. 

Figure 1 shows our experimental design for auto-
matically generating a data transfer between California 
districts and CARB for 2002 given historical 2001 
data. First, applying SIfT as a post-analysis to the 2001 
transfer (arrow a), we learn the mappings between the 
data columns for 2001 (evaluation of this step is 
shown in Section 5.2). Then, given the schema 

Figure 1. Experimental design for automatically generating a 
data transfer between VCAPCD/SBCAPCD and CARB for
2002 given historical 2001 data. 
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Figure 2. A correct alignment discovered by SIfT between the Process Description columns in the 
SBCAPCD and CARB databases. Here, the feature type is “TEXTP” so the fully qualified features are
“TEXTP:Flashing Loss”, “TEXTP:Working Loss”, … 

Figure 3. A view of the feature vectors for the Process Description columns in the SBCAPCD and 
CARB databases. The features are sorted in descending order of mutual information. Underlined fea-
tures are shared by both columns whereas dark gray features are solely from the SBCAPCD column and 
light gray features are solely from the CARB column. SIfT aligns the two columns because they share 
many high-mutual information features. 



changes for both the districts and CARB for 2002 (ar-
rows c and d), we determine which mappings from a 
still hold. It is not unreasonable to expect that arrows c 
and d can be obtained from the district and CARB 
since schema changes are usually tracked from year to 
year within a department. Given a district’s 2002 data, 
we can then follow the arrows c, a, and d, to integrate 
it with the CARB 2002 database, which is arrow b 
(evaluation of this step is presented in Section 5.3). 

5.2. Alignment results 

In this section, we evaluate SIfT’s ability to align 
columns across data sources (arrow a in Figure 1). For 
the purposes of this evaluation, we focused on the 
2001 SBCAPCD and 2001 CARB data. The 
SBCAPCD and CARB emissions inventory databases 
used in our experiments each contain approximately 
300 columns, thus a completely naïve human must 
consider approximately 90,000 alignment decisions in 
the worst case. 

5.2.1. Gold standard 

We manually aligned the SBCAPCD and CARB 
emissions inventories from year 2001. This alignment 
noted and estimated the strength of probable intra-
source matches (e.g., likely foreign key or other join 
relationships) as well as inter-source links (typically, 
equivalence or subset relationships between columns 
of the two different databases). While some table-table 
correspondences and row-row partial equivalences 
were detected, the primary recorded results consisted 
of inter-source column associations. 

The methodology for constructing the "gold stan-
dard" alignment was informal. It would be preferable 
to have a column-to-column alignment catalog agreed 
upon by the two agencies, but this was not available as 
it would require a large investment of labor on the part 
of our local government partners to develop. The en-
tirety of the gold standard, including annotations, is 
available from the SIfT url: http://sift.isi.edu/. 

5.2.2. Precision and recall 

SIfT outputs for each column in a source database 
the columns to which it aligns in the target database2. 
Figure 2 illustrates a screenshot of a correct alignment 
discovered by SIfT between the Process Description 

                                                 
2 A customizable interface to the SIfT toolkit is available at 

http://sift.isi.edu/, allowing users to create new alignments, 
navigate the information theoretic model, and inspect 
alignment decisions. 

columns in SBCAPCD and CARB. Figure 3 illustrates 
why these columns are aligned by SIfT. It shows a 
view of the feature vectors for both columns. The fea-
tures are sorted in descending order of mutual infor-
mation; underlined features are shared by both col-
umns whereas dark gray features are solely from the 
SBCAPCD column and light gray features are solely 
from the CARB column. SIfT aligns the two columns 
because they share many high-mutual information 
features. 

The precision of the system is the percentage of 
correct alignment decisions: 

AT
CPrecision =  

where C is the number of correct alignment pairs and 
TA is the total number of alignment pairs in the system 
alignment. This type of precision is often called micro-
precision. Another precision, called macro-precision, 
averages the average precision of each column that is 
being aligned. 

The recall of the system is the percentage of gold 
standard alignment pairs, TG, which were retrieved by 
the system: 

GT
CRecall =  

Precision and recall measure the tradeoff between 
identifying alignments correctly and getting all the 
possible alignment. For example, a system that returns 
all possible alignment pairs would achieve a recall of 
100% but with an abysmal precision. Increasing the 
threshold θ from Section 4.3 increases the recall of the 
system but decreases the precision. 

It is sometimes useful to have a single measure that 
combines precision and recall aspects. One such meas-
ure is the F-measure [12], which is the harmonic mean 
of recall and precision: 
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F
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where R is the recall and P is the precision. Typically, 
α = ½ is used: 

PR
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+

=
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F weighs low values of precision and recall more 
heavily than higher values. It is high when both preci-
sion and recall are high. 

Table 1 shows the results comparing the precision, 
recall, and F-measure of various different feature rep-
resentations. The Simple system simply represents 
each column by the data elements it contains. The Tri-
gram representation extracts letter trigram features for 
each field whereas the Rich representation extracts all 



possible features domains and feature types described 
in Section 4.1.1. Each representation uses the informa-
tion-theoretic vector space model presented in Section 
4.1.2. 

Curiously, the F-measure of the simple representa-
tion is higher than the more complicated representa-
tions. This is due to the power of the mutual-
information vector-space model which in effect auto-
matically discovers the key values of a particular data 
domain. By inspection, we see that the feature do-
mains in the Rich representation are only useful if they 
have very high precision and recall (e.g., zip codes). 

Table 2 shows the precision of our system where 
the precision indicates the percentage of columns that 
have at least one correct alignment in the top-5 align-
ments. Interestingly, if the system can find a correct 
alignment for a given column, then the alignment will 
be found in the first two returned candidate align-
ments. Considering only two candidate alignments for 
each possible column will greatly reduce the number 
of possible decisions made by a human expert. Assum-
ing that each of the 90,000 candidate alignments must 
be considered (in practice, many alignments are easily 
rejected by human experts) and that for each column 
we output at most k alignments, then a human expert 
would have to inspect only k × 300 alignments. For k 
= 2, only 0.67% of the possible alignment decisions 
must be inspected, an enormous saving in time. 

5.3. Projecting SIfT alignments 

In the previous section, we evaluated SIfT’s ability 
to align columns across databases. Now, we evaluate 
the task of integrating new data as it becomes avail-

able each year (arrow b in Figure 1). Using the design 
in Figure 1, we automatically integrated 2002 
VCAPCD and 2002 SBCAPCD databases with 
CARB’s 2002 database using historical 2001 data. 
Unlike in Section 5.2, since CARB provided us with 
their 2002 databases, we have a true gold standard 
against which to compare our integration. 

For both VCAPCD and SBCAPCD, we randomly 
sampled 50 columns in the automatically integrated 
CARB 2002 databases. A human judge was asked to 
classify each aligned column according to the follow-
ing guidelines: 

Correct: The column is aligned correctly accord-
ing to the gold standard. 

Partially Correct: The aligned column is a subset 
or superset of the gold standard alignment. 
This situation arises when only a selection of 
the column is transferred to CARB or when a 
join must be performed on the district tables 
to match the CARB schema. We must look 
beyond simple column alignments to solve 
these problems, which is beyond the scope of 
this paper. 

Incorrect: The column is not aligned correctly ac-
cording to the gold standard. 

Table 3 shows the results of our evaluation. The 
accuracy of the system is computed by adding one 
point for each correct alignment, half a point for each 
partially correct alignment, no points for each incor-
rect alignment, and then dividing by the sample size. 

Some district columns do not get integrated into the 
CARB database (i.e., SIfT does not find any alignment 
for these columns). In our 50 random samples for 

Table 2. Top-5 precision of different feature representations

SYSTEM TOP-1 TOP-2 TOP-3 TOP-4 TOP-5 

Simple 71.4% 92.9% 92.9% 92.9% 92.9% 

Trigrams 66.7% 83.3% 83.3% 83.3% 83.3% 

Rich 62.5% 93.8% 93.8% 93.8% 93.8% 

 

Table 1. Precision, recall and F-measure of different feature 
representations. 

 PRECISION RECALL F-MEASURE 

SYSTEM MICRO MACRO MICRO MACRO MICRO MACRO 

Simple 75.0% 65.0% 72.2% 65.0% 73.6% 65.0% 

Trigrams 44.4% 44.4% 81.5% 80.0% 57.5% 57.1% 

Rich 62.5% 57.7% 79.6% 75.0% 70.0% 65.2% 

 



VCAPCD, nine columns were left unaligned by SIfT, 
of which six were correct and three were incorrect. 

Error analysis shows that SIfT is particularly bad at 
aligning binary (Yes/No or 0/1) columns. Here, the 
mutual information vector-space model is not useful 
since binary values are shared by many columns. Such 
columns, which are easily identified, should be aligned 
by a separate process. For example, we might simply 
compare the ratio of 0’s vs. 1’s or even compare the 
raw frequency of 0’s and 1’s. Likely, however, more 
complex table and row analysis is needed. A possible 
avenue for future work is to use Kang and Naughton’s 
algorithm [7], described in Section 2, to align these 
uninformative columns using the other alignments 
discovered by SIfT as seeds. 

Each SIfT alignment includes a similarity score, as 
described in Section 4.2. This similarity can be viewed 
as SIfT’s confidence in each alignment. For both 
VCAPCD and SBCAPCD, we sorted the 50 randomly 
sampled alignments in descending order of SIfT 
confidence and measured the accuracy for the Top-K 
alignments, for K = {1, 5, 10, 25, 50}. Note that for 
binary columns, SIfT disregards the similarity score 
and assigns a 0 confidence score. The results are illus-
trated in Table 4. As expected, the higher the confi-
dence SIfT has in a particular alignment, the higher the 
chances that this alignment is correct. 

6. Conclusions and future work 

We proposed an information theoretic model, 
called SIfT, for performing data-driven column align-
ments. We have applied SIfT to the task of aligning the 
Santa Barbara County Air Pollution Control District 
and Ventura County Air Pollution Control District’s 

2001 and 2002 emissions inventory databases with the 
California Air Resources Board statewide inventory 
database. SIfT yielded 75% precision and 72.2% recall 
on the column alignment task. On the task of integrat-
ing new district data with the statewide database, we 
achieved 55% accuracy for Ventura County and 59% 
accuracy for Santa Barbara County. 

This work has the potential to significantly reduce 
the amount of human work involved in creating sin-
gle-point access to multiple heterogeneous databases. 
This problem is faced by thousands of large enter-
prises with numerous data collections, from Govern-
ment agencies at all levels to the chemical and auto-
motive industries to startup companies that link to-
gether and integrate websites. By automatically postu-
lating mappings across databases/metadata, our algo-
rithms can enable the database wrapper builder 
(whether fully manual or semi-automated) to work 
more quickly and effectively. It will also help with the 
creation of metadata standards. 
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