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ABSTRACT 

Alias problems are commonly encountered in the intelligence community, social 
network analysis, databases, biology, and marketing. Inspired by recently 
developed technologies in natural language processing, we propose an 
information theoretic approach for automatically detecting aliases. The algorithm 
discovers the most informative connections (e.g. emails, phone calls, and 
transactions) between entities, greatly reducing the search space, and then 
compares them to identify entities exhibiting similar behaviors. We test our model 
by applying it to the task of discovering duplicate facilities in heterogeneous 
environmental databases. Given our system’s top-5 guesses for each facility, we 
extracted with 92% accuracy 89% of the true aliases. 

INTRODUCTION 

Alias detection is the problem of uncovering duplicate or near-duplicate entities in a dataset. 
Problem domains can be as simple as datasets containing accidentally replicated data, or as 
complex as populations containing criminals or terrorists wielding multiple identities. Teasing 
out duplicate or near duplicate entities in the later case is a serious and challenging problem. 

Alias problems are commonly encountered in the intelligence community when performing 
background checks or, in general, when tracking individuals from a broad population. Often, 
simple orthographic cues indicate an alias, as in Osama bin Laden and Usama bin Laden, for 
example. Other times, semantic variations can be detected, as in for example Richard 
Fendlebaum and Dick Fendlebaum. 

Malicious individuals, however, can easily fool such verifications by assigning completely 
different labels to their identities. But, their behaviors are likely to be similar since they are much 
harder to fake or separate across identities. Behaviors can be observed from various sources of 
information such as communications (emails, phone calls, chats), transaction material (financial 
transactions, travel logs, shipments), social links, etc. 

For large populations, the total number of such observations can become enormous, with 
only a small portion of important observations overlapping for aliases. Consider the following 
scenario of a population of Southern California residents and two particular residents John Doe 



2 

and Alex Forrest. If you were told that last year both John and Alex called the Hollywood area 
about 21 times a month, then would this increase your confidence that John and Alex are the 
same person? Yes, certainly. Now, suppose I also told you that John and Alex both called Kabul 
about 21 times a month. Intuitively, this observation yields much more evidence that John and 
Alex are similar or aliases since not many Southern California residents call Kabul with such 
frequency. Measuring the relative importance of such observations and leveraging them to detect 
aliases is the topic of this paper. We will outline an information theoretic framework that models 
the importance of observations by capturing the intuition of the above example. 

The remainder of this paper is organized as follows. In the next section, we review previous 
approaches to alias detection. We then present five important problems that can be cast as an 
alias detection problem. Subsequently, we outline our information theoretic model and present 
experimental results on the task of database integration. Finally, we conclude with a discussion 
and future work. 

RELATED WORK 

Most previous solutions to the alias problem search for morphologic, phonetic, or semantic 
variations of the labels associated with the entities. One of the earliest approaches, patented in 
1918 by Margaret O’Dell and Robert Russell, was a rule-based system that matched labels which 
are roughly phonetically alike. This algorithm, later refined as the Soundex matching algorithm 
[8], removes vowels and represents labels with six phonetic classifications of human speech 
sounds (bilabial, labiodental, dental, alveolar, velar, and glottal). 

Recently, researchers have begun looking at combining orthographic (and phonetic) features 
with semantic features. In addition to string edit distance features, [2] and [6] began looking at 
the behavioral observations that we introduced in the previous section. They asserted 
connections between entities for each interrelation present in a link data set, ignoring the actual 
relation types. Adding these semantic cues outperformed previous methods like Soundex. Unlike 
these approaches, our technique makes use of the link labels (e.g. relation types such as email, 
financial transaction, travel to, etc.) Also, our method automatically determines the importance 
of each link. 

A related problem in the natural language processing community is automatic spelling 
correction. The most widely used systems are based on Shannon’s noisy channel model [3][7]. 
The systems assume that the word that was meant to be written was altered by some corruption 
model (the noisy channel). A decoder is then trained on tagged examples to reconstruct the 
original (intended) word given the surface error. 

Another related but different problem is when multiple entities are referred to by the same 
label [10]. For example, the name Michael Jackson refers not only to the singer, but also to the 
bank president, the talk show host, and the author of several books about beer. This problem is 
important in natural language applications, such as question answering, which must answer 
questions such as “Where is the Taj Mahal?” and must select between candidate answers such as 
Agra, India or Atlantic City, NJ. Most approaches to name resolution have used clustering 
techniques over coreference chains [1], multiple syntactic and semantic features [9], and over 
referents by first applying a maximum entropy model that estimates the probability that two 
labels refer to the same entity [5]. 
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DID YOU KNOW? FIVE IMPORTANT ALIASING PROBLEMS 

Solving the aliasing problem is important for many different purposes in various domains such as 
the intelligence community, social network analysis, databases, biology, and marketing. In some 
cases, it can be used to flag malicious intents while in others it can be used to clean data and to 
link knowledge. In this section, we describe five problems that exhibit an aliasing problem at the 
core: identity thefts, identifying and monitoring terrorist cells, data integration, social network 
analysis, and author identification. For each of these problems, we describe below the entities of 
the population as well as some of the behavioral observations that may be available for modeling 
in our system. 

Identity Theft 
Identity theft is the fastest growing financial crime in the U.S. According to a Federal Trade 
Commission survey, it is estimated that 27 million Americans have been victims of identity theft 
in the past five years. In one of its incarnations, thieves acquire social security numbers and other 
personal information in order to fraudulently acquire credit cards, bank accounts and cell phone 
accounts. It can be years before unsuspecting victims discover that their credit is ruined, they 
owe large sums of money to creditors, or worse that they are prosecuted for financial frauds. 

Supposing authorities are tracking a known identity thief, we expect that our system will be 
capable of discovering the identities that were stolen by modeling their usage behaviors. The 
population consists of identities (e.g. all social security numbers) and examples of observed 
behaviors may include communications, financial transactions, travel information, etc. 

Another type of identity theft is when a criminal fraudulently acquires identities, but then 
sells them instead of using them himself or herself. Here, we expect that our method would not 
work since the identities are used in different ways by different people. 

Terrorist Cells 
In 2004, the FBI estimated that al-Qaida sleeper cells were believed to be operating in 40 states, 
awaiting orders and funding for new attacks on American soil. It is also approximated that 
between 2,000 and 5,000 terrorist operatives currently operate in the U.S. 

Generally, it is believed that the social links as well as the similar religious and cultural 
background of terrorists yield cells of very similar people. Treating each terrorist cell as an 
identity, one can perform group detection to identify its members using aliasing models. Here, 
the population consists of, say, people living in America and known terrorist cells. The observed 
behaviors may include communications, financial transactions, travel information, etc. We 
expect that certain observations will be rare and some will be erroneous, but our model is quite 
tolerant to sparsity and noise. 

Data Integration 
In many large organizations and especially government, data is split in many different ways and 
is collected at different times by different people. The resulting massive data heterogeneity 
means that staff cannot effectively locate, share, or compare data across sources, let alone 
achieve computational data interoperability. 
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What is needed is a method to integrate the data in two comparable but heterogeneous data 
sources. We can partially address this problem by finding matching records across sources. The 
population consists of all possible records in two data sources, and the observable behaviors are 
the data fields that are contained in each record. For example, given records of contact names 
along with contact information such as phone number, address, zip code, etc., we can use this 
contact information as the observations for our model. 

Social Network Analysis 
User modeling and recommendation systems are easily hampered by duplicate users in social 
networks. Duplicate identities, whether accidentally created or not, are prominent. The 
population here consists of all identities in the network and the observed behaviors include 
personal attributes such as contact information, colleges attended, board memberships, etc., as 
well as communication links. 

Author Identification 
Author identification is the task of attributing authorship to anonymous text [13]. The problem 
exists in many forms like identifying plagiarism, accrediting famous historical writings to their 
true authors, and even ownership or copyright legal battles. In the context of alias detection, 
techniques for author identification can be used to model a source’s communication style by 
looking at the very words and expressions she uses. In an electronic world where one’s 
population consists solely of citizens of the Internet, or Netizens, then one can simply observe 
the language use and style to find aliases. 

INFORMATION THEORETIC MODEL 

Many alias detection problems consist of large numbers of entities and observations. However, 
as illustrated in the introduction, certain observations are much more important than others when 
matching entities (e.g. calling Kabul vs. Hollywood). In this section, we outline an information 
theoretic model that measures this importance. 

Before we formally describe the model, we appeal to the reader’s intuition. Recall our phone 
call scenario from the introduction where we were asked if Southern California residents John 
Doe and Alex Forrest are the same person given their monthly phone call records. Figure 1 a) 
lists John’s most frequent phone calls along with the call frequencies. It is not surprising that a 
Californian would call L.A., Culver City, Anaheim, and even D.C. If Alex had similar calling 
patterns to these four cities, it would certainly increase our confidence that him and John are the 
same person, but obviously our confidence would increase much more if Alex called the more 
surprising cities Kabul and Mosul. 

Looking only at the frequencies of the calls in Figure 1 a), however, one would put more 
importance on matching calls to L.A. than to Kabul. The goal of our framework is to have a 
better measurement than frequency for the importance of each call and to re-rank them in order 
of information content. Figure 1 b) illustrates the frequencies of John calling D.C., John calling 
any city, and anyone calling D.C, whereas c) illustrates the same for Kabul. Notice that although 
D.C. is much more frequent than Kabul, many more people in the population call D.C. than 
Kabul. Our model leverages this idea by adding importance for a city to which John calls 
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frequently and by deducting importance if many people in the general population call the same 
city. After applying our model, the cities in Figure 1 a) are re-ranked as follows: 

 Kabul 7.88 
 Mosul 7.05 
 Leipzig 5.78 
 Hamburg 5.58 
 Culver City 5.48 
 D.C. 5.33 
 L.A. 4.77 
 Anaheim 4.46 
 Ventura 4.38 
 Toronto 4.36 
 Boston 4.31 
 Covina 2.91 
 Compton 2.86 
 St. Louis 2.40 
 Long Beach 2.03 
 Carson 1.62 
 Hollywood 1.43 

Figure 1. Identifying important observations in our fictitious scenario of phone calls placed by
Southern California residents. a) Frequency of phone calls placed monthly by John Doe. b) 
Frequency of calls placed by John and others (*) to D.C. and other cities (*). c) Frequency of calls
placed by John and others (*) to Kabul and other cities (*). 

John D.C.
calls

John *

calls

* D.C.
calls

= 336

= 1606

= 1300281

John Kabul
calls

John *

calls

* Kabul
John

= 21

= 1606

= 227

L.A. 571
D.C. 336
Hamburg 234
Culver City 199
Anaheim 103
Leipzig59
Mosul 51
Toronto38
Boston 34
Ventura33
St. Louis 31
Kabul 21
Hollywood 21
Covina 20
Long Beach 16
Carson 16
Compton 16

b)

a)

c)
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The four cities that were bold in Figure 1 b) are now at the top of this list, and consequently 
more importance is now put on matched calls to Kabul than matched calls to Hollywood. We 
now formally introduce the model. 

Pointwise Mutual Information 
Pointwise mutual information is commonly used to measure the association strength between 
two events [4]. It essentially measures the amount of information one event gives about another. 
For example, knowing that a Southern Californian calls L.A. is not informative since most 
residents call L.A. Conversely, if he or she calls Kabul, then this is an informative observation. 
The pointwise mutual information between two events x and y is given by: 

 ( ) ( )
( ) ( )yPxP

yxPyxmi ,log, =  

Pointwise mutual information is high when x and y occur together more often than by chance. 
It compares two models (using KL-divergence) for predicting the co-occurrence of x and y: one 
is the MLE (maximum-likelihood estimation) of the joint probability of x and y and the other is 
some baseline model. In the above formula, the baseline model assumes that x and y are 
independent. Note that in information theory, mutual information refers to the mutual 
information between two random variables rather than between two events as used in this paper. 
The mutual information between two random variables X and Y is given by: 

 ( ) ( ) ( )
( ) ( )∑∑

∈ ∈

=
X Yx y yPxP

yxPyxPYXMI ,log,,  

The mutual information between two random variables is the weighted average (expectation) 
of the pointwise mutual information between all possible combinations of events of the two 
variables. 

For each entity in our population e, we first construct a frequency count vector C(e) = (ce1, 
ce2, …, cem), where m is the total number of features (observations) and cef is the frequency count 
of feature f occurring for entity e. Here, cef is the number of times we observed feature f for entity 
e. For example, in Figure 1 b), one feature for e = John Doe is f = Kabul with frequency 21. 

We then construct a mutual information vector MI(e) = (mie1, mie2, …, miem) for each entity e, 
where mief is the pointwise mutual information between e and feature f, which is defined as: 
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entities. 

In our example from Figure 1 b), assuming that N = 1.32 x 1012, the mutual information for e 
= John Doe and feature f = D.C. is: 
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A well-known problem is that mutual information is biased towards infrequent 
entities/features. We therefore multiply mief with the following discounting factor [11]: 
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Similarity Model 
Now that we have a method of ranking observations according to their relative importance, we 
still need a comparison metric for determining the likelihood that two entities are aliases. The 
requirement is that the metric handles large feature dimensions and that it not be too sensitive to 
0-valued features. That is, the absence of a matching observation is not as strong an indicator of 
dissimilarity as the presence of one is an indicator of similarity. Some measures, like the 
Euclidean distance, do not make this distinction. Many models could apply here; we chose the 
cosine coefficient model [12]. The similarity between each pair of entities ei and ej, using the 
cosine coefficient of their mutual information vectors, is given by: 

 ( )
∑∑

∑
×

×
=

f
fe

f
fe

f
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ji
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mimi

mimi
eesim

22
,  

This measures the cosine of the angle between two mutual information vectors. A similarity 
of 0 indicates orthogonal vectors whereas a similarity of 1 indicates identical vectors. For two 
very similar elements, their vectors will be very close and the cosine of their angle will approach 
1. 

Detecting Aliases 
We now have all the pieces of the puzzle to detect aliases from a given population and a set of 
observations. Figure 2 illustrates our system architecture for alias detection. The various 
observations (e.g. travel logs, communications, social links, etc.) are first processed through our 
mutual information model to generate a ranked composite view of the important observations. 
Then, our similarity model is used to detect and rank candidate aliases for each entity in our 
population. 
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EXPERIMENTAL RESULTS 

We evaluate our model on one of the five problems described earlier in this paper: database 
integration. Below, we describe our experimental setup and present our results. 

Experimental Setup 
We acquired two heterogeneous environmental databases containing overlapping emissions 
inventories for various facilities (e.g. gas stations, companies, universities, etc.) The first 
database was provided by the Santa Barbara County Air Pollution Control District (SBCAPCD), 
which contains a complete archive of the emissions inventory it conducted for 2001. The second 
database was provided by the California Air Resources Board (CARB) in the form of the 
statewide emissions inventories for 2001. 

For each database, we extracted all records containing a facility identifier and constructed the 
mutual information vectors described in the previous section using each record cell as an 
observation (feature). Our task then is to identify the facilities in SBCAPCD that map to the 
CARB database, without making use of any facility labels. 

We experimented with two representation models: 

 BOW: Bag-of-words. This representation initially counts the frequency of each cell 
value for each facility before computing the mutual information vectors; 

 SOW: Set-of-words. This representation initially either sets the frequency to 0 for 
unobserved cell values of a facility or to 1 for observed values before computing 
the mutual information vectors. 

For example, suppose that facility fac occurred in multiple records with the cell value “large” 
eight times, the value “10” twice, and never with the value “xyz”. Then, under the BOW model, 
the observations for fac are {large:8, 10:2, xyz:0}; under the SOW model, the observations are 
{large:1, 10:1, xyz:0}. These frequency vectors are then converted into mutual information 
vectors as described in the previous section. 

Figure 2. System architecture. First, the mutual information model is applied to the observations of a population. 
Then, the similarity model yields candidate aliases for each entity in the population. 
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After applying the cosine coefficient 
similarity metric, we obtain a ranked list of the 
most similar CARB facilities for each 
SBCAPCD facility. To identify potential 
aliases, a similarity threshold θ must be defined 
as a cutoff in this list. In our experiments, we 
tested different values of θ. 

Precision and Recall 
To evaluate our system, we first manually 
mapped each facility in SBCAPCD to their 
corresponding CARB facilities. We then 
measured the system’s precision and recall on 
the task of automatically detecting the 
matching facilities across databases. The precision of the system is the percentage of correct 
detections: 

 
AT

CPrecision =  

where C is the number of correctly detected aliases and TA is the total number of proposed aliases 
by the system. The recall is the percentage of manually extracted aliases, TM, which were 
retrieved by the system: 

 
MT

CRecall =  

Precision and recall measure the tradeoff between identifying aliases correctly and retrieving 
all of them. 

Figure 3. System precision on varying cosine
similarity thresholds. 
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Figure 4. System recall on varying cosine similarity 
thresholds. 

Precision vs. Recall

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Recall

Pr
ec

is
io

n

SB - CARB: BOW SB - CARB: SOW

Figure 5. Precision vs. recall tradeoff. 



10 

Figures 3 and 4 illustrate the precision and recall of our system with varying similarity 
thresholds. The SOW model consistently outperforms the BOW model. We suspect that this is 
due to the many observations that coincidently share the same value (for example, many data 
cells contain the value 1 to represent a measurement, a unit, and even a Boolean). The SOW 
model is less sensitive to these chance mappings since it simply records whether the value was 
present or not. Increasing the similarity threshold θ increases the precision of the system but 
decreases the recall. This indicates that the similarity model correctly makes fewer errors when it 
assigns higher confidence to an alias. The tradeoff between precision and recall is illustrated in 
Figure 5. 

Allowing the system to return its top-K best guesses for each facility could potentially 
significantly increase the recall of the system while still greatly reducing the amount of time an 
analyst has to spend to verify the system (i.e. she would look at only K guesses for each facility 
instead of each possible mapping). We experimented with varying values of K and measured the 
precision and recall of the SOW model. The results are shown in Figures 6 and 7. At low 
similarity thresholds, where the system has less confidence on matches, both the precision and 
recall increase when returning five guesses instead of just one. However, with larger thresholds, 
the system either correctly identifies an alias in the first position, or completely misses it 
altogether. 

CONCLUSIONS AND FUTURE WORK 

Aliasing is a common problem encountered in various domains from the intelligence community 
to social network analysis, databases, biology, and marketing. Instead of detecting aliases by 
looking for morphological, phonetic, or semantic cues in entity labels, we focus our attention on 
behavioral cues exhibited by the entities (e.g. communications, financial transactions, social 
links, etc.) For large populations, the total number of such observations can become enormous, 
with only a small portion of the important observations overlapping for aliases. In this paper, we 
proposed an information theoretic model for measuring this importance and leveraging it to 

Precision vs. Sim Threshold (SOW)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0
0.0

2
0.0

3
0.0

5
0.0

6
0.0

8
0.0

9
0.1

1
0.1

2
0.1

4
0.1

5
0.1

7
0.1

8 0.2

Similarity Threshold

Pr
ec

is
io

n

Top-1: Top-2: Top-3: Top-4: Top-5:
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detect aliases. We applied our model to the task of detecting duplicate facilities in two 
heterogeneous environmental databases. Below is a summary of the evaluation results: 

 with 100% accuracy, our system was able to extract 50% of the matching facilities; 

 with 90% accuracy, our system was able to extract 75% of the matching facilities; 

 for a given facility and the top-5 mappings returned by our system, with 92% 
accuracy, our system was able to extract 89% of the matching facilities. 

At a minimum, our model can dramatically reduce the time a human needs to find matching 
facilities (looking at only five possible aliases for each facility would recall 89% of the possible 
aliases). However, the power of the model is critically dependent on gathering the right 
observations that aliases might share, which in itself is a very interesting avenue of future work. 
Given the right types of observations, our model has the potential to solve several serious and 
urgent problems such as terrorist detection, identity thefts, and data integration. 
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