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ABSTRACT 
As with many large organizations, the Government's data is split 
in many different ways and is collected at different times by 
different people. The resulting massive data heterogeneity means 
government staff cannot effectively locate, share, or compare data 
across sources, let alone achieve computational data 
interoperability. A case in point is the California Air Resources 
Board (CARB), which is faced with the challenge of integrating 
the emissions inventory databases belonging to California's 35 air 
quality management districts to create a state inventory.  This 
inventory must be submitted annually to the US EPA which, in 
turn, must perform quality assurance tests on these inventories 
and integrate them into a national emissions inventory for use in 
tracking the effects of national air quality policies. The premise of 
our research is that it is possible to significantly reduce the 
amount of manual labor required in database wrapping and 
integration by automatically learning mappings in the data. In this 
research, we applied statistical algorithms to discover 
correspondences across comparable datasets. We have seen 
particular success in an information theoretic model, called SIfT 
(Significance Information for Translation), that performs data-
driven column alignments. We have applied SIfT to mapping the 
Santa Barbara County Air Pollution Control District’s 2001 
emissions inventory database with the California Air Resources 
Board statewide inventory database. A fully customizable 
interface to the SIfT toolkit is available at http://sift.isi.edu/, 
allowing users to create new alignments, navigate the information 
theoretic model, and inspect alignment decisions. On a broader 
scale, this work makes strides toward appeasing a central problem 
in data management of integrating legacy data. 

Categories and Subject Descriptors 
H.2.5 [Database Management]: Heterogeneous Databases. 

General Terms 
Algorithms, Experimentation. 
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1. INTRODUCTION 
Due to the wide range of geographic scales and complex tasks 
that the Government must administer, its data is split in many 
different ways and is collected at different times by different 
agencies. The resulting massive data heterogeneity means one 
cannot effectively locate, share, or compare data across sources, 
let alone achieve computational data interoperability. 

To date, all approaches to wrap data collections, or even to create 
mappings across comparable datasets, require manual effort. 
Despite some promising work, the automated creation of such 
mappings is still in its infancy, since equivalences and differences 
manifest themselves at all levels, from individual data values 
through metadata to the explanatory text surrounding the data 
collection as a whole. More general methods are required to 
effectively address this problem. 

Viewing the data mapping problem as a variant of the cross-
language mapping problem in Machine Translation (MT), we 
employed new statistical text alignment and clustering algorithms 
developed in Natural Language Processing to discover 
correspondences across comparable datasets. In this paper, we 
present an information theoretic model, which we call SIfT 
(Significance Information for Translation), that performs data-
driven column alignment. The key to our approach is to first 
identify, using the information-theoretic model, the most 
informative data elements and then match data sources that share 
these informative elements. This work has the potential to 
significantly reduce the amount of human work involved in 
creating single-point access to multiple heterogeneous databases. 

2. GOVERNMENT COLLABORATION 
We are working with the following set of domain data. Emissions 
inventories are being provided by staff at the California Air 
Resources Board (CARB) in Sacramento, who are faced with the 
challenge of integrating the emissions inventory databases 
belonging to California's 35 Air Quality Management Districts 
(AQMD) to create a state inventory. This inventory must be 
submitted annually to the US EPA which, in turn, must perform 
quality assurance tests on these inventories and integrate them 
into a national emissions inventory. 

To deliver their annual emissions data submittal to CARB, air 
districts have to manually reformat their data according to the 
specifications of CARB’s emission inventory database called 
California Emission Inventory Development and Reporting 
System (CEIDARS). Every time the CEIDARS data dictionary is 
revised (as has happened several times recently, for example in 

 

 



2002), work is required on the part of AQMD staff to translate 
emissions data into the new format. Likewise, when CARB 
provides emissions data to US EPA’s National Emission 
Inventory (NEI), significant effort is required by CARB staff to 
translate data into the required format.  

Our development testbed is the 2001 Santa Barbara County Air 
Pollution Control District (SBCAPCD) emissions inventory, one 
of the 35 California air districts. Locally, SBCAPCD’s database 
contains 20 tables with approximately 300 columns, 160,000 
rows, and 1.8 million data elements. The target CEIDARS schema 
contains only 6 tables with a total of 260 columns, 70,000 rows, 
and 2.4 million values. 

We expect that SIfT will greatly reduce the manual effort required 
to build the wrappers and mappings required for all the entirety of 
California. 

3. RELEVANT WORK IN ALIGNMENT 
Although there is a wealth of information in government 
databases, a lack of standardization has made it very difficult to 
integrate various data sources. Integration and reconciliation of 
data across non-homogeneous databases is an old but unsolved 
and ever-growing problem.  Some mechanism is required to 
standardize data types, reconcile slightly different views, and 
enable sharing.   For textual data, the information retrieval 
approach exemplified in web search engines such as Google and 
Yahoo! works reasonably well to find exact and close matches 
(around 40% recall and precision, over the past decade, 
determined at the annual TREC1 conferences). 

For numerical data, however, search engines are inappropriate.  
Instead, two approaches are possible.  Either one can build a 
central data model that integrates the specialized metadata for 
each database, or one can create direct mappings across the data 
(cells, columns, rows, etc.) of the databases themselves.  Both 
approaches are difficult. With regard to the former, various 
methods have been developed.  The “global-as” method [2][3] 
assumes the central model is complete, but that local databases 
may deviate from it; access is via the central model.  This model 
requires serious effort to extend.  In contrast the “local-as” 
method [8] assumes that the central model is incomplete, simply 
narrowing the sources to be further searched, which may require 
tedious additional search effort.  In contrast, the “ontology 
method” uses a single overarching super-metadata model (the 
ontology) into which all databases’ metadata descriptions are 
subordinated hierarchically [1][6]. 

The second general approach, creating mappings across individual 
(subsets of) data, is impossible to bring about for real-sized data 
collections, unless automated methods are used to find the 
mappings.  Machine learning methods are only now being applied 
to this problem. Schema-based matching algorithms [12] align 
databases by matching the meta-data available in the databases 
(e.g., two tables with column name zip_code are aligned; most 
approaches will also match columns labeled zip_code and zip). 
However, since there is often no standardized naming scheme for 

                                                                 
1 The Text REtrieval Conference (TREC) provides the 

infrastructure necessary for large-scale evaluation of text within 
the information retrieval community. 

meta-data, schema-based sometimes fails. Instance-based 
matching algorithms align databases using the actual data [5]. 
These methods typically fail when different columns share a 
common domain (e.g., business vs. residence phone numbers) or 
when matching columns that exhibit different encodings (e.g., a 
phone number field stored as a text string in one database and 
stored as a numerical field in another). Kang and Naughton [7] 
propose an information-theoretic model to match unaligned 
columns after schema- and instance-based matching fails. Given 
two columns A.x and B.x that are aligned, the model computes the 
association strength between column A.x with each other column 
in A and column B.x and each other column in B. The assumption 
is that the highly associated columns from A and B are the best 
candidates for alignment. In this paper, we adopt a similar 
information-theoretic model for instance-based matching. 

4. DATA-DRIVEN ALIGNMENT 
The key to our approach is to first identify, using an information-
theoretic model, the most informative data elements and then 
match data sources that share these informative elements. For 
example, in our case study of matching SBCAPCD and CARB 
schemas, since the source data is from Santa Barbara County, we 
expect that many of the columns in SBCAPCD will contain the 
word “Santa Barbara” (e.g., factory names, locations, addresses, 
etc.) However, only one column contains the word “Wingerden.” 
Therefore, a random pair of columns from SBCAPCD and CARB 
that both contain the data element “Santa Barbara” are intuitively 
not as similar as if both columns contained the data element 
“Wingerden.” Our model will automatically detect that “Santa 
Barbara” is less informative than “Wingerden” and will 
consequently assign a higher similarity to two columns that share 
only “Wingerden” rather than only “Santa Barbara”. 

4.1 Information Theoretic Model 
Informative elements are modeled in SIfT using an information 
theoretic measure called mutual information. Similar columns are 
discovered using a clustering algorithm called CBC [9]. 

In any clustering application, the critical step is representing the 
data such that elements group together according to our desired 
output. For example, if we want to cluster medical patients 
according to their possible diseases, we might represent them by 
their height, weight, age, gender, whether they smoke or not, etc.; 
we would not, however, represent them by their favorite board 
game or favorite movie since with this representation we would 
likely group patients according to their entertainment preferences. 

The representation of an element is often called a feature vector 
(or vector space model). Each feature is simply a measurement of 
the element. For example, in clustering data points on a 3-
dimentional graph, we would represent each point using three 
features: the x, y, and z coordinates. These three measurements 
completely describe the points. 

4.1.1 Feature Representation 
In aligning inter-database columns s and t, we assume that s and t 
contain similar but not necessarily identical fields (accounting for 
noise and discrepancies in the data). One representation for 
columns is simply the data fields they contain. Consider the 
following database columns taken from two databases S and A: 



 
S.phone.number: 

310-555-6789, 310-555-0987,  
780-433-9393, … 

A.area: 
310, 310, 780, … 

A.ph: 
555-6789, 555-0987, 433-9393, … 

We could represent these columns using their field values with a 
frequency of occurrence as measurement. For the above example, 
the feature vectors using this representation would be: 

S.phone.number: 
310-555-6789 1 
310-555-0987 1 
780-433-9393 1 

A.area: 

310 2 

780 1 

A.ph: 

555-6789 1 

555-0987 1 

433-9393 1 

Notice that none of these features overlap and consequently a 
clustering algorithm would not discover any similarity between 
the columns. In this research, we enrich the feature space by 
classifying data columns within several feature domains (e.g., zip 
code, phone number, state, positive integer). Once a column is 
classified within a particular feature domain, the feature types 
associated with that domain are extracted for the column’s feature 
vector (e.g., zip5 – the first five digits of a zip code, zip4 – the last 
four digits of a nine-digit zip code, area – the area code of a 
phone number, exch – the 3-digit phone number exchange, phone 
– the seven-digit local phone number, ext – the extension of any 
digits after a 10-digit phone number). We also add domain 
specific feature domains. For example, in aligning the EPA Air 
Quality databases, we added feature domains for SIC codes 
(OSHA), NAICS codes (CENSUS), EIC codes (CARB), SCC 
point source codes (EPA), and CAS registry numbers (EPA2). 

The algorithm we use for recognizing these domains simply 
searches for patterns that describe the domain. For example, a 10-
digit phone number is recognized if the first three digits are a 
known area code, the fourth digit is between [2-9], and the rest of 
the field is numeric. If our patterns do not fire on a particular 
column (e.g., a column containing international phone numbers), 
then the catch-all Text feature domain will always fire. 

We allow the user of the system to decide which feature domains 
and associated feature types are active for any given alignment. 
Suppose a column is identified as a phone number and we decide 
to extract feature types area and phone for all phone numbers. 
Then for each field such as “310-555-6789”, the system extracts 
two features with frequency 1: 

area:310   1 
phone:555-6789  1 

Similarly, for fields such as “555-6789”, we extract a single 
feature: 

phone:555-6789  1 

Now, we see some overlap between the columns S.phone.number 
and A.ph from the previous section. A clustering algorithm could 
therefore discover a similarity between the two columns. 

4.1.2 Mutual-Information Vector-Space Model 
Representing data for clustering requires both a feature 
representation and a measurement of the features. We now 
describe our model for measuring the feature types described in 
the previous section. 

Above, we measured each feature by its frequency of occurrence. 
However, certain features are more informative than others. For 
example, the common word ‘the’ will be present in many text 
strings. Two strings that happen to contain the word ‘the’ does not 
indicate as much similarity as if they contained an uncommon 
word such as ‘carbon’. 

Pointwise mutual information is commonly used to measure the 
association strength between two events [4]. It essentially 
measures the amount of information one event gives about 
another. For example, knowing that a column contains the word 
‘the’ is not informative of the contents of that column (because 
the is common across many columns). Conversely, if very few 
columns contain the word carbon, then that word is an 
informative feature (i.e. if columns p and q from different 
databases happen to contain carbon, then they are more likely to 
be aligned than if they shared the word the). 

The pointwise mutual information between two events x and y is 
given by: 

( ) ( )
( ) ( )yPxP

yxPyxmi ,log, =  

Mutual information is high when x and y occur together more 
often than by chance. Mutual information compares two models 
for predicting the co-occurrence of x and y: one is the MLE 
(maximum-likelihood estimation) of the joint probability of x and 
y and the other is some baseline model. In the above formula, the 
baseline model assumes that x and y are independent. Note that in 
information theory, mutual information refers to the mutual 
information between two random variables rather than between 
two events as used in this paper. The mutual information between 
two random variables X and Y is given by: 
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The mutual information between two random variables is the 
weighted average (expectation) of the pointwise mutual 
information between all possible combinations of events of the 
two variables. 

For each element e, we first construct a frequency count vector 
C(e) = (ce1, ce2, …, cem), where m is the total number of features 
and cef is the frequency count of feature f occurring in element e. 
Here, cef is the number of times column e contained a feature f. 
For example, in column e = A.area from Section 4.1.1, one 
feature is area:310 with count 2. 

We then construct a mutual information vector MI(e) = (mie1, 
mie2, …, miem) for each column e, where mief is the pointwise 
mutual information between column e and feature f, which is 
defined as: 
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4.2 Similarity Metric 
To cluster elements, we need a measure of similarity (or distance) 
between them. We construct a matrix containing the similarity 
between each pair of columns ei and ej using the cosine 
coefficient of their mutual information vectors [10]: 
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This measures the cosine of the angle between two mutual 
information vectors. A similarity of 0 indicates orthogonal vectors 
whereas a similarity of 1 indicates identical vectors. For two very 
similar elements, their vectors will be very close and the cosine of 
their angle will approach 1. A nice property of the cosine metric 
is that it is not very sensitive to 0 frequency features. Hence, 
given a column containing phone numbers of all customers/stores 
and another column containing only customer phone numbers, 
cosine will find a similarity even though all store phone numbers 
will have frequency 0 in the second column. In other words, the 
absence of a matching feature is not as strong an indicator of 
dissimilarity as the presence of one is an indicator of similarity. 

Other measures like the Euclidean distance do not make this 
distinction. 

4.3 Alignment 
SIfT uses the similarity matrix generated by the clustering 
algorithm. For each column from source database A, we align it 
with its most similar columns from target database S such that the 
similarity is above a certain threshold θ. 

5. EVALUATION 
Preliminary inspections using SIfT show very promising results. 
The system was able to find 75.0% of the mappings that were 
manually inserted into a gold standard. SIfT also found several 
mappings that were undetected by a human annotator. 

Given databases A and B, the ideal goal of our task is to 
automatically generate the same column alignment that a human 
expert would generate. A step forward is to greatly reduce the 
number of alignment pairs to consider by a human expert. We 
evaluate our system by measuring its precision and recall, and by 
measuring its reduction in human effort to generate a manual 
alignment. 

5.1 Data Set 
The source material we use for mappings, in the form of 
individual data sets, metadata schemas, etc., was provided by the 
Santa Barbara County Air Pollution Control District (SBCAPCD). 
SBCAPCD provided a complete archive of the emissions 
inventory it conducted for 2001 and 2002, covering facilities, 
devices, processes, permitting history, as well as criteria and toxic 
emissions. Mapping target material, including an integrated 
database and its metadata schema, was provided by the California 
Air Resources Board (CARB), in the form of the statewide 
emissions inventory for 2001 and 2002. Negotiations with other 
air districts are also underway. 

For the purposes of our evaluation, we focused on the 2001 
SBCAPCD and 2001 CARB data. The SBCAPCD and the CARB 
emissions inventory databases used in our experiments each 
contain approximately 300 columns, thus a completely naïve 
human must consider 90,000 alignment decisions. 

5.2 Gold Standard 
We conducted a hand-alignment of the Santa Barbara County 
APCD 2001 emissions data to the structure and contents of the 
California ARB emissions inventory, limiting ourselves to the 
portion of the ARB data set covering SBC APCD.  We broke the 
task into two main subtasks: (1) Intra-source alignment, or 
discovering and documenting internal relationships, such as 
foreign keys, within the two components; (2) Inter-source 
alignment, or aligning important key columns of SBC APCD with 
the best candidate columns of ARB, focusing on columns that did 
not appear to be used primarily for intra-source relations.  As we 
were hoping to gain insight into the process which would further 
our data-driven approach, we did not make significant use of 
available metadata and background documentation.  As we are 
not domain experts, and we did not take advantage of significant 
computational aids beyond simple spreadsheet-level bookkeeping, 
each of the two main tasks described above required roughly 40 
hours of detail-oriented work by a professional research 

Figure 1. A correct alignment discovered by SIfT for the EQSIZE
column in the CARB database to the Physical Size column in the 
SBCAPCD database.  



programmer. This “gold standard” alignment, including 
annotations, was communicated back to the participating 
agencies.  In a few cases these “noisy” match transforms were 
found to correspond to bugs in the data management work pattern 
within an agency. 

The methodology for constructing a "gold standard" alignment 
was informal and ad hoc.  It would be preferable to have a 
column-to-column alignment catalog agreed upon by the two 
agencies, but this was not available as it would require a 
potentially large investment of labor on the part of our local 
government partners to develop.  The entirety of the gold 
standard, including annotations, is available from the SIfT url: 
http://sift.isi.edu/. 

5.3 Precision and Recall 
SIfT outputs for each column in a source database the columns to 
which it aligns in the target database. Figure 1 illustrates a 
screenshot of a correct alignment discovered by SIfT from 
CARB’s EQSIZE column to SBCAPCD’s Physical Size column. 

The precision of the system is the percentage of correct alignment 
decisions: 

AT
CPrecision =  

where C is the number of correct alignment pairs and TA is the 
total number of alignment pairs in the system alignment. This 
type of precision is often called micro-precision. Another 
precision, called macro-precision, averages the average precision 
of each column that is being aligned. 

The recall of the system is the percentage of gold standard 
alignment pairs, TG, that were retrieved by the system: 

GT
CRecall =  

Precision and recall measure the tradeoff between identifying 
alignments correctly and getting all the possible alignment. For 
example, a system that returns all possible alignment pairs would 
achieve a recall of 100% but with an abysmal precision. 
Increasing the threshold θ from Section 4.3 increases the recall of 
the system but decreases the precision. 

It is sometimes useful to have a single measure that combines 
precision and recall aspects. One such measure is the F-measure 
[11], which is the harmonic mean of recall and precision: 
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where R is the recall and P is the precision. Typically, α = ½ is 
used: 
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F weighs low values of precision and recall more heavily than 
higher values. It is high when both precision and recall are high. 

Table 1 shows the results comparing the precision, recall, and F-
measure of various different feature representations. The Simple 
system simply represents each column by the fields it contains. 
The Trigram representation extracts letter trigram features for 
each field whereas the Rich representation extracts all possible 
features domains and feature types described in Section 4.1.1. 
Each representation uses the information-theoretic vector space 
model presented in Section 4.1.2. The F-measure of the simple 
representation is as good as if not better than the other two. This 
is due to the power of the mutual-information vector-space model 
which in effect automatically discovers the key values of a 
particular data domain. 

Table 2 shows the precision of our system where the precision 
indicates the percentage of columns that have at least one correct 
alignment in the top-5 alignments. Interestingly, if the system can 
find a correct alignment for a given column, then the alignment 
will be found in the first two returned candidate alignments. 

Table 1. Precision, recall and F-measure of different feature 
representations. 

 PRECISION RECALL F-MEASURE 

SYSTEM MICRO MACRO MICRO MACRO MICRO MACRO 

Simple 75.0% 65.0% 72.2% 65.0% 73.6% 65.0% 

Trigrams 44.4% 44.4% 81.5% 80.0% 57.5% 57.1% 

Rich 62.5% 57.7% 79.6% 75.0% 70.0% 65.2% 

 

Table 2. Top-5 precision of different feature representations 

SYSTEM TOP-1 TOP-2 TOP-3 TOP-4 TOP-5 

Simple 71.4% 92.9% 92.9% 92.9% 92.9% 

Trigrams 66.7% 83.3% 83.3% 83.3% 83.3% 

Rich 62.5% 93.8% 93.8% 93.8% 93.8% 

 
 



Inspecting only two candidate alignments for each possible 
column will greatly reduce the number of possible decisions made 
by a human expert. 

6. DISCUSSION AND FUTURE WORK 
In our experiments with SBCAPCD and CARB, each database 
contains approximately 300 columns. Thus, there are 90,000 
alignment decisions that must be considered. Assuming that each 
alignment must be considered (in practice, many alignments are 
easily rejected by human experts) and that for each column we 
output at most k alignments, then a human expert would have to 
inspect only k × 300 alignments. For k = 2, only 0.67% of the 
possible alignment decisions must be inspected, an enormous 
saving in time. 

We are currently deploying SIfT on data from other California 
districts like Ventura County APCD and San Diego County 
APCD. However, our challenge lies not in the post-analysis of a 
data transfer between district and state in past years, but instead 
on linking new data as it becomes available each year. This is a 
challenge since the data formats may change on both sides (the 
collectors and the integrators). Since, however, changes year by 
year are not likely to be large, we can try to reconcile the possibly 
divergent evolutions automatically, thereby closing the loop by 
automatically generating the data transfers. Figure 2 shows our 
design for automatically generating a data transfer between a 
California district and CARB for 2005 given the 2004 data. First, 
applying SIfT as a post-analysis to the 2004 transfer (arrow a), we 
learn the mappings between the data sources for 2004 (this is 
what is presented in this paper). Then, given the schema changes 
for both SBCAPCD and CARB for 2005 (arrows b and c), we 
determine which mappings from a still hold. Human experts need 
only manually align those data elements from the (usually small) 
schema changes. Achieving this challenge, we hope that SIfT will 
be useful to our Government partners. 

7. CONCLUSIONS 
We proposed an information theoretic model, called SIfT, for 
performing data-driven column alignments. We have applied SIfT 
to the task of aligning the Santa Barbara County Air  Pollution 
Control District’s (SBCAPCD) 2001 emissions inventory 
database with the California Air Resources Board statewide 
inventory database. A fully customizable interface to the SIfT 

toolkit is available at http://sift.isi.edu/, allowing users to create 
new alignments, navigate the information theoretic model, and 
inspect alignment decisions. 

This work has the potential to significantly reduce the amount of 
human work involved in creating single-point access to multiple 
heterogeneous databases. This problem is faced by thousands of 
large enterprises with numerous data collections, from 
Government agencies at all levels to the chemical and automotive 
industries to startup companies that link together and integrate 
websites. By automatically postulating mappings across 
databases/metadata, our algorithms will enable the database 
wrapper builder (whether fully manual or semi-automated) to 
work more quickly and effectively. It will also help with the 
creation of metadata standards. 

8. REFERENCES 
[1] Ambite, J.L.; Arens, Y.; Gravano, L.; Hatzivassiloglou, V.; Hovy, 

E.H.; Klavans, J.L.; Philpot, A.; Ramachandran, U.; Ross, K.; 
Sandhaus, J.; Sarioz, D.; Singla, A.; and Whitman, B. 2002. Data 
Integration and Access: The Digital Government Research Center’s 
Energy Data Collection (EDC) Project.  In W. McIver and A.K. 
Elmagarmid (eds), Advances in Digital Government. pp. 85–106. 
Dordrecht: Kluwer. 

[2] Baru, C.; Gupta, A.; Ludaescher, B.; Marciano, R.; 
Papakonstantinou, Y.; and Velikhov, P. 1999. XML-Based 
Information Mediation with MIX. In Proceedings of Exhibitions 
Program of ACM SIGMOD International Conference on 
Management of Data. 

[3] Chawathe, S.; Garcia-Molina, H.; Hammer, J.; Ireland, K.; 
Papakonstantinou, Y.; Ullman, J.; and Widom, J. 1994. The 
TSIMMIS Project: Integration of Heterogeneous Information 
Sources.  In Proceedings of IPSJ Conference. Tokyo, Japan. pp.  
7–18. 

[4] Church, K. and Hanks, P. 1989. Word association norms, mutual 
information, and lexicography. In Proceedings of ACL-89. pp. 76–
83. Vancouver, Canada. 

[5] Doan, A.; Domingos, P.; and Halevy, A.Y. 2001. Reconciling 
schemas of disparate data sources: A machine-learning approach. In 
Proceedings of SIGMOD-2001. pp. 509–520. Santa Barbara, CA. 

[6] Hovy, E.H. 2003. Using an Ontology to Simplify Data Access. In 
Communications of the ACM, Special Issue on Digital Government. 
January. 

[7] Kang, J. and Naughton, J.F. 2003. On schema matching with opaque 
column names and data values. In Proceedings of SIGMOD-2003. 
San Diego, CA. 

[8] Levy, A.Y. 1998. The Information Manifold approach to data 
integration. IEEE Intelligent Systems (September/October), 11–16. 

[9] Pantel, P. and Lin, D. 2002. Discovering word senses from text. In 
Proceedings of SIGKDD-02. pp. 613–619. Edmonton, Canada. 

[10] Salton, G. and McGill, M.J. 1983. Introduction to Modern 
Information Retrieval. McGraw Hill. 

[11] Shaw Jr., W. M.; Burgin, R.; and Howell, P. 1997. Performance 
standards and evaluations in IR test collections: Cluster-based 
retrieval methods. Information Processing and Management, 33:1–
14. 

[12] Tova, M. and Zohar, S. 1998. Using schema matching to simplify 
heterogeneous data translation. In Proceeding of VLDB-1998. pp. 
122–133. 

2004 2004

SBCAPCD CARB

2005

b

a

Auto.
Mapping

Given
Data

Legend:

2005d

c
SIfT

Schema

Figure 2. Closing the loop: the design for automatically 
generating a data transfer between SBCAPCD and CARB for 
2005 given the 2004 data. 


