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C O V E R  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

Data Alignment 
and Integration 

T o handle the wide range of geographic
scales and complex tasks that it must
administer, the government splits its data
in many different ways, collecting it at dif-
ferent times and through different agen-

cies. The resulting massive data heterogeneity
makes it impossible to effectively locate, share, or
compare data across sources, let alone achieve
computational data interoperability. 

Many settings urgently need some form of data
alignment or merging. For example, an air-quality
scientist at a state environmental agency such as the
California Air Resources Board (CARB) reconciles
air emissions data from local regions to monitor
overall patterns and support air-policy regulation.
In a homeland security scenario, analysts identify
and track threat groups using separately collected
and stored individual behaviors such as phone calls,
e-mail messages, financial transactions, and travel
itineraries. 

Addressing these issues requires finding similari-
ties between entities within or across heterogeneous
data sources. To date, most approaches for inte-
grating data collections, or even for creating map-
pings across comparable data sets, require manual
effort. Despite some promising recent work, the
automated creation of such mappings is still in its
infancy because equivalences and differences man-
ifest themselves at all levels, from individual data
values through metadata to the explanatory text
surrounding the data collection as a whole. 

Some data sources contain auxiliary information
such as relational structure or metadata, which have
proven useful in interrelating entities. However, such
auxiliary data can be outdated, irrelevant, overly
domain-specific, or simply nonexistent. Therefore,

a general-purpose solution can’t rely on such auxil-
iary data. All we can count on is the data itself: a set
of observations describing the entities.

Applying this purely data-driven paradigm, we’ve
built two systems: Guspin for automatically iden-
tifying equivalence classes or aliases, and Sift for
automatically aligning data across databases. The
key to our underlying technology is identifying the
most informative observations and then matching
entities that share them. 

We’ve used our systems to align US Environ-
mental Protection Agency (EPA) data between the
Santa Barbara County Air Pollution Control Dis-
trict (SBCAPCD) and Ventura County Air Pollution
Control District (VCAPCD) emissions inventory
databases and the CARB statewide inventory data-
base, as well as to identify equivalence classes in the
EPA’s Facilities Registry System (FRS). This work
can significantly reduce the amount of human effort
involved in creating single-point access to multiple
heterogeneous databases.

GOVERNMENT PARTNERS
The staff at CARB annually integrates the emis-

sions inventory databases belonging to California’s
35 air quality management districts (AQMDs) to
create a state inventory. They submit this inventory
annually to the US EPA, which performs quality-
assurance tests on state inventories and integrates
them into a national emissions inventory for use in
tracking national air-quality policies’ effects. 

To deliver their annual emissions data to CARB,
air districts must manually reformat the data
according to the specifications of CARB’s California
Emission Inventory Development and Reporting
System. Every time CARB revises the CEIDARS
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data dictionary (as it did in 2002 and several
other times recently), AQMD staff must
translate emissions data into the new format.
Likewise, when CARB provides emissions
data to the US EPA’s National Emission
Inventory (NEI), the CARB staff must
expend significant effort translating data into
the required format. Our goal with this data
set is to automatically integrate the AQMD
databases with the CARB database.

The FRS is a centrally managed database
recording information about US facilities such as
refineries, gas stations, and manufacturing sites that
are subject to environmental regulations. Because
various sources provide the FRS entries, the data-
base contains many duplicates. Our goal for this
data set is to automatically discover the duplicate
entries.

INFORMATION MODEL
Comparing all data in a large collection housed

in one or more databases can be an overwhelming
task. But not all data is equally useful for compar-
ison. Some observations are more informative and
important than others. 

When assessing the similarity between entities,
important observations should be weighted higher
than less important ones. The “Leveraging Im-
portant Data” sidebar provides an intuitive exam-
ple of this concept. 

Claude Shannon’s classic 1948 article provides
a way of measuring the information content of
events.1 This theory of information provides a
pointwise mutual information metric quantifying
the association strength between two events by
measuring the amount of information one event
tells us about the other. By applying this theory to
our problem, we can identify the most important
observations for each entity in a population.

Formally, pointwise mutual information quanti-
fies the association strength between two events. It
essentially measures the amount of information one
event x gives about another event y, where P(x)
denotes the probability that x occurs, and P(x, y)
the probability that both events occur jointly:

Pointwise mutual information compares two
models (using Kullback-Leibler, or KL, divergence2)
for predicting the co-occurrence of x and y: One
model is the maximum-likelihood estimate (MLE)
of the joint probability of x and y, and the other is
the MLE of x and y occurring independently.
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Pointwise mutual information is high when x and
y occur together more often than they would by
chance, which is computed by the probability of x
and y occurring independently.

In the example from Figure A2 in the sidebar,
assuming that the total frequency count of all
phone calls from all people is 1.32 × 1012, then the
pointwise mutual information between events John
and calls-to-DC is:

and between John and calls-to-Bogota is

COMPUTING SIMILARITY
Given a method of ranking observations by their

relative importance, we still need a comparison
metric for determining the similarity between two
entities. The metric must not be too sensitive to
unseen observations—that is, the absence of a
matching observation is not as strong an indicator
of dissimilarity as the presence of one is an indica-
tor of similarity. (Some metrics, such as the
Euclidean distance, don’t make this distinction.) 

Many metrics could apply here. We chose one of
the more common ones: the cosine coefficient metric.
The similarity between each pair of entities ei and ej,
using the cosine coefficient metric,3 is given by:

where o ranges through all possible observations
(for example, phone calls). This measures the cosine
of the angle between two pointwise mutual infor-
mation vectors. A similarity of 0 indicates orthog-
onal vectors (that is, unrelated entities), whereas a
similarity of 1 indicates identical vectors. Two very
similar elements will have vectors that are very
close, and their angle’s cosine will approach 1.
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Claude Shannon’s classic 1948 article gives us a way 
to measure the information content of events. Shannon’s 
theory of information provides a pointwise mutual infor-
mation metric that quantifies the association between two
events by measuring the amount of information one event
tells us about the other. 

The following scenario illustrates the power of pointwise
mutual information. 

Assume you’re a narcotics officer charged with tracking
two individuals—John Doe and Alex Forrest—from a pop-
ulation of Southern California residents. Would knowing
that last year both John and Alex called Hollywood about
21 times a month increase your confidence that John and
Alex are the same person or from the same social group?
Possibly. 

Now, suppose we also told you that John and Alex both
called Bogota about 21 times a month. Intuitively, this
observation yields considerably more evidence that John
and Alex are similar because not many Southern California
residents call Bogota so frequently. Measuring the relative
importance of such observations—calling Hollywood and
calling Bogota—and leveraging them to compute similari-
ties is the key to our approach.

Table A lists John’s most frequently called cities along
with the call frequencies. It’s not surprising that a
Californian would call Los Angeles, Culver City, Anaheim,
and even Washington, D.C. If Alex had similar calling pat-
terns to these four cities, it would somewhat increase our
confidence that he and John are similar, but obviously our
confidence would increase much more if Alex also called
the more unusual cities, Bogota and Medellin.

Looking only at the call frequencies in Figure A1, we would
place more importance on matching calls to Los Angeles than
to Bogota. But mutual information provides a framework for
reranking calls by their relative importance (information con-

tent). Figure A1 shows the frequencies of John calling
Washington, D.C., John calling any city, and anyone calling
Washington, D.C.; Figure A2 illustrates the same for Bogota.
Although John calls Washington, D.C., more frequently than
Bogota, many more people in the population call Washington,
D.C., than Bogota. 

Pointwise mutual information leverages this observation by
adding importance for a city to which John calls frequently and
deducting importance if many people in the general popula-
tion call the same city. Table B shows the results of reranking
the cities by the pointwise mutual information measure.

Leveraging Important Data

Table A. Frequency of phone calls that John Doe placed
monthly.

City Call frequency  City Call frequency  

Los Angeles 571 Boston 34
Washington, D.C. 336 Ventura 33
Hamburg 234  St. Louis 31
Culver City 199 Bogota 21   
Anaheim 103 Hollywood 21 
Leipzig 59  Covina 20
Medellin 51  Long Beach 16
Toronto 38  Carson 16

John D.C. = 336

calls

John other cities = 1606

calls

other callers D.C. = 1300281

calls

(1)

John Bogota = 21

calls

John other cities = 1606

calls

other callers Bogota = 227

calls

(2)

Figure A. Identifying important observations in our homeland
security scenario of phone calls placed by Southern California 
residents: (1) frequency of calls that John and others placed to
Washington, D.C., and other cities; and (2) frequency of calls 
that John and others placed to Bogota and other cities.

Table B. Reranking results of phone calls by pointwise infor-
mation.

Reranked Reranked
City score  City score  

Bogota 7.88 Ventura 4.38  
Medellin 7.05 Toronto 4.36 
Leipzig 5.78  Boston 4.31
Hamburg 5.58 Covina 2.91  
Culver City 5.48 St. Louis 2.40  
Washington, D.C. 5.33 Long Beach 2.03
Los Angeles 4.77  Carson 1.62  
Anaheim 4.46 Hollywood 1.43 
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SYSTEMS
We’ve applied the technology to several prob-

lems, including automatically building a word the-
saurus, discovering concepts, inducing paraphrases,
and identifying aliases in a homeland security sce-
nario (www.isi.edu/~pantel). 

In the digital government context, we’ve built
two Web tools—Guspin and Sift—and applied
them to problems the EPA faces. At their core, both
systems employ pointwise mutual information and
similarity models.

Guspin
Guspin (http://guspin.isi.edu) is a general-purpose

tool for finding equivalence classes within a popu-
lation. It provides a simple user interface that lets a
user upload one or multiple data files containing
observations for a population. The system identifies
duplicate (or near-duplicate) entities and presents
the results to the user for browsing or download.

We used Guspin to identify duplicates in our two
test sets (the CARB and AQMD emissions inven-
tories and the FRS). For the CARB and SBCAPCD
2001 emissions inventories, Guspin extracted

• 50 percent of the matching facilities with 100
percent accuracy,

• 75 percent of the matching facilities with 90
percent accuracy, and

• 89 percent of the matching facilities with 92
percent accuracy for a given facility and its top-
5 mappings.

Our second test used a sample of the FRS. Each
FRS record includes a particular facility’s name,
address, state, and zip code. We upload the FRS data

through Guspin’s Web interface. Guspin measures
the mutual information between entities and obser-
vations, computes the similarity between each entity
pair, clusters entities into equivalence classes, and
provides a browsing tool that an analyst can use to
find equivalence classes and navigate a population’s
similarity space. The analyst can also download the
resulting Guspin analysis for further examination.

With Guspin’s search feature, users can search
for individual entities. For example, Guspin found
that facility 189 is grouped with facilities 300 and
79. Figure 1 shows the results of a search for facil-
ity 189’s most similar entities. For each similar
entity, Guspin shows the cosine similarity score and
a “why?” link, which lets the user compare obser-
vations of the two facilities (recall that we use
important observations to compute the similarity
between entities).

Figure 2 shows comparisons between observa-
tions for facilities 189 and 79 and between obser-
vations for facilities 189 and 300. Blue and green
observations apply to only one of the two facilities,
whereas both facilities share red observations. The
figure lists observations in descending order of
mutual information scores. 

For very similar entities, we expect that the most
important observations (those at the top of the list)
will be red. In fact, even though Figure 2 shows that
facilities 189 and 79 share fewer common obser-
vations than facilities 79 and 300, the similarity
between facilities 189 and 79 is greater because they
share more important features (that is, more red
features are at the top of the list).

Guspin is useful for other tasks. For example, it
can identify occurrences of plagiarism in essays by
representing essays with the words they contain.
Or, it can help researchers find coregulated genes
by representing genes with their expressions in a
series of microarray experiments.

Sift
Sift (http://sift.isi.edu) is a Web-based applica-

tion portal for cross-database alignment.4 Given
two relational data sources, Sift helps answer the
question, Which rows, columns, or tables from
source 1 have high correspondence with (all or part
of) some parallel constructs from source 2? Most
previous attempts at intersource alignment rely
heavily on metadata, such as table and column
names and data types.5 Yet, as noted earlier, meta-
data is often unreliable or unavailable.

Sift provides most of the same functionality as
Guspin, but adds control over the definition and
use of observations in the data sources. Whereas

Figure 1. Guspin’s search interface. In this example, facility 189 from the 
EPA’s Facilities Registry System is most similar to facilities 79 and 300. A user
can click on a facility name to view its observation data or on “why?” for a 
comparison of observation data from facilities 189, 79, and 300.



Guspin takes a population description as input, Sift
more narrowly draws input from a pair of rela-
tional databases. The user controls which database
elements to include in the alignment (for example,
columns, rows, and tables). 

Table 1 shows database column fragments taken
from two databases, A and B. Because none of the
observations in the data fields overlap exactly,
Guspin wouldn’t be able to find any match. Sift
overcomes this problem by preprocessing observa-
tions to identify known observation types, such as
phone numbers, zip codes, time, and date. Sift can
then reformulate the observations into their atomic
parts. For example, a phone number’s atomic rep-
resentation could be the area code and local phone
number, whereas a date’s atomic representation
would be its month, day, and year components. 

After this preprocessing, Sift reformulates the first
field of the example in Table 1, A.T1.phone_num-
ber, to 310 and 555-6789. Sift then matches these
observations to those in B.T2.area_code and B.T2.
local_phone. The user controls which reformula-
tions to apply.

Consider CARB’s task of creating an annual emis-
sions inventory for California—that is, a catalog of
the emitting facilities, processes, and devices in the
state’s 35 local AQMDs and the measurement or
estimated toxic and criteria pollutants they produce.

Here, we consider the column alignment between
CARB and the SBCAPCD. The CARB and
SBCAPCD emissions inventory databases used in
our experiments each contain approximately 300
columns, thus a completely naïve human must con-
sider approximately 90,000 alignment decisions in
the worst case.

After selecting reformulation parameters, Sift mea-
sures the mutual information between columns and
observations (data fields), computes the similarity
between each pair of columns, and presents the user
with an interface for browsing the alignment. 

Figure 3 shows a correct alignment discovered by
Sift for the columns containing process descriptions.

Sift also displays the most important observations
contributing to the alignment (including the point-
wise mutual information scores and frequency). 

Like Guspin, Sift provides a “why did these
match?” link for comparing the observations of the
two aligned columns. Figure 4 illustrates why Sift
aligns the process description columns. It shows a
complete view of the observations for both
columns. The observations are in descending order
of pointwise mutual information. Observations in
red belong in both columns, whereas observations
in blue are from the SBCAPCD column only, and
observations in green are from the CARB column
only. Sift aligns the two columns because they share
many high mutual information observations.

Sift discovered 295 alignments, of which 75 per-
cent were correct. Of the 306 true alignments, Sift
identified 221, or 72 percent. Interestingly, when
Sift finds a correct alignment for a given column, it
finds it in the first two returned candidate align-
ments. 

Considering only two candidate alignments for
each possible column will reduce the number of pos-
sible decisions a human expert makes. Assuming
that we must consider each of the 90,000 candidate
alignments (in practice, human experts easily reject
many alignments) and that for each column Sift 
outputs at most k alignments, a human expert
would have to inspect only k × 300 alignments. For
k = 2, a human must inspect only 0.67 percent of the 
possible alignment decisions, an enormous time 
savings.
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Figure 2. Guspin comparison of two entities’ observations. (a) Comparison of observations for facilities 189 and 79
(similarity = 0.862) and (b) comparison of observations for facilities 189 and 300 (similarity = 0.561).Observations are
sorted in decreasing order of pointwise mutual information scores. Blue and green observations apply to only one of
the facilities; red observations are shared by both. 

Table 1. Database column fragments.

A.T1. B.T2. B.T2.
phone_number area_code local_phone  

310-555-6789 310 555-6789 
310-666-0987 310 666-0987 
213-777-9393 310 777-9393 

(a) (b)
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To be of practical use to government, a system
must effectively analyze data transfers between dis-
trict and state and integrate new data as it becomes
available each year. This is challenging because data
formats can change on both the collectors’ and the
integrators’ sides. However, because year-to-year
changes are rarely significant, we can reconcile the

possibly divergent evolutions automatically,
thereby closing the loop by automatically generat-
ing the data integration. 

We used this process to integrate the 2002 data-
bases of both the Ventura County Air Pollution
Control District (VCAPCD) and SBCAPCD into
CARB.4 We randomly sampled 50 columns in the

Figure 3. Sift display. Sift discovered a correct alignment between the process description columns in the Santa 
Barbara County Air Pollution Control District and California Air Resources Board databases.

Figure 4. Observations for the process description columns in the SBCAPCD and CARB databases, in descending order
of mutual information. Observations in red belong to both columns, observations in blue are only from the SBCAPCD
column, and observations in green are only from the CARB column. The predisposition of red observations to appear at
the head of the list demonstrates Sift’s effectiveness.   



automatically integrated CARB 2002 databases,
then we asked a human judge to classify each aligned
column according to the following guidelines:

• Correct. The column is aligned correctly
according to the gold standard.

• Partially correct. The aligned column is a sub-
set or superset of the gold standard alignment.
This situation arises when we transfer only
part of the column to CARB or when we must
perform a join on the district tables to match
the CARB schema. Solving these problems
requires more than simple column alignments
and is beyond this article’s scope.

• Incorrect. The column is not aligned correctly
according to the gold standard.

Table 2 shows our evaluation’s results. We com-
pute the system’s accuracy by adding one point for
each correct alignment, half a point for each par-
tially correct alignment, and no points for each incor-
rect alignment, and then dividing the total by the
sample size. Sift doesn’t align some district columns
into the CARB database—that is, it doesn’t find any
alignment for these columns. In our 50 random
VCAPCD samples, Sift left nine columns unaligned;
of these, six were correct and three were incorrect.

Error analysis shows that Sift is particularly bad
at aligning binary (yes/no or 0/1) columns. The
pointwise mutual information model isn’t useful
here because many columns share binary values. A
separate process should align such columns, which
are easy to identify. For example, we might simply
compare the ratio of 0s and 1s or the raw frequency
of 0s and 1s. Likely, however, we’ll need more com-
plex table and row analysis.

Each alignment includes a similarity score (from
the cosine similarity metric). We can view this sim-
ilarity as Sift’s confidence in each alignment. For
both VCAPCD and SBCAPCD, we sorted the 50
randomly sampled alignments in descending order
of Sift confidence and measured the accuracy for
the top K alignments, for K = {1, 5, 10, 25, 50}. For
binary columns, Sift disregards the similarity score
and assigns a 0 confidence score. Table 3 illustrates
the results. As expected, the higher the confidence
Sift has in a particular alignment, the higher the
chances that this alignment is correct.

A general-purpose solution to the problem of
matching entities within or across heteroge-
neous data sources can’t depend on the pres-

ence or reliability of auxiliary data such as

structural information or metadata. Instead, it must
leverage the available data (or observations) that
describe the entities. Our technology, based on
information theory principles, measures the impor-
tance of observations and then leverages them to
quantify the similarity between entities. 

At a minimum, our systems can dramatically
reduce the time an analyst needs to find related enti-
ties in a population. However, the technology’s
power depends on gathering the right observations
that entities might share, which in itself is an inter-
esting avenue of future work. Given the right types
of observations, our model can potentially solve
several serious and urgent problems that govern-
ments face, such as terrorist detection, identity
theft, and data integration. ■
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SBCAPCD 100% 100% 95% 76% 59%  
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