

Concept Discovery from Text

Dekang Lin and Patrick Pantel
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2E8

{lindek,ppantel}@cs.ualberta.ca

Abstract

Broad-coverage lexical resources such as
WordNet are extremely useful. However,
they often include many rare senses while
missing domain-specific senses. We present
a clustering algorithm called CBC (Cluster-
ing By Committee) that automatically
discovers concepts from text. It initially
discovers a set of tight clusters called
committees that are well scattered in the
similarity space. The centroid of the
members of a committee is used as the
feature vector of the cluster. We proceed by
assigning elements to their most similar
cluster. Evaluating cluster quality has
always been a difficult task. We present a
new evaluation methodology that is based
on the editing distance between output
clusters and classes extracted from WordNet
(the answer key). Our experiments show that
CBC outperforms several well-known
clustering algorithms in cluster quality.

1 Introduction
Broad-coverage lexical resources such as
WordNet are extremely useful in applications
such as Word Sense Disambiguation (Leacock,
Chodorow, Miller 1998) and Question-
Answering (Pasca and Harabagiu 2001).
However, they often include many rare senses
while missing domain-specific senses. For
example, in WordNet, the words dog, computer
and company all have a sense that is a hyponym
of person. Such rare senses make it difficult for
a coreference resolution system to use WordNet
to enforce the constraint that personal pronouns
(e.g. he or she) must refer to a person. On the
other hand, WordNet misses the user-interface-
object sense of the word dialog (as often used in
software manuals). One way to deal with these
problems is to use a clustering algorithm to

automatically induce semantic classes (Lin and
Pantel 2001).

Many clustering algorithms represent a cluster
by the centroid of all of its members (e.g., K-
means) (McQueen 1967) or by a representative
element (e.g., K-medoids) (Kaufmann and
Rousseeuw 1987). When averaging over all
elements in a cluster, the centroid of a cluster
may be unduly influenced by elements that only
marginally belong to the cluster or by elements
that also belong to other clusters. For example,
when clustering words, we can use the contexts
of the words as features and group together the
words that tend to appear in similar contexts. For
instance, U.S. state names can be clustered this
way because they tend to appear in the following
contexts:
(List A) ___ appellate court campaign in ___

 ___ capital governor of ___
 ___ driver's license illegal in ___
 ___ outlaws sth. primary in ___
 ___'s sales tax senator for ___

If we create a centroid of all the state names, the
centroid will also contain features such as:
(List B) ___'s airport archbishop of ___

 ___'s business district fly to ___
 ___'s mayor mayor of ___
 ___'s subway outskirts of ___

because some of the state names (like New York
and Washington) are also names of cities.

Using a single representative from a cluster
may be problematic too because each individual
element has its own idiosyncrasies that may not
be shared by other members of the cluster.

In this paper, we propose a clustering algo-
rithm, CBC (Clustering By Committee), in
which the centroid of a cluster is constructed by
averaging the feature vectors of a subset of the
cluster members. The subset is viewed as a
committee that determines which other elements
belong to the cluster. By carefully choosing
committee members, the features of the centroid
tend to be the more typical features of the target

class. For example, our system chose the
following committee members to compute the
centroid of the state cluster: Illinois, Michigan,
Minnesota, Iowa, Wisconsin, Indiana, Nebraska
and Vermont. As a result, the centroid contains
only features like those in List A.

Evaluating clustering results is a very difficult
task. We introduce a new evaluation methodol-
ogy that is based on the editing distance between
output clusters and classes extracted from
WordNet (the answer key).

2 Previous Work
Clustering algorithms are generally categorized
as hierarchical and partitional. In hierarchical
agglomerative algorithms, clusters are
constructed by iteratively merging the most
similar clusters. These algorithms differ in how
they compute cluster similarity. In single-link
clustering, the similarity between two clusters is
the similarity between their most similar
members while complete-link clustering uses the
similarity between their least similar members.
Average-link clustering computes this similarity
as the average similarity between all pairs of
elements across clusters. The complexity of
these algorithms is O(n2logn), where n is the
number of elements to be clustered (Jain, Murty,
Flynn 1999).

Chameleon is a hierarchical algorithm that
employs dynamic modeling to improve
clustering quality (Karypis, Han, Kumar 1999).
When merging two clusters, one might consider
the sum of the similarities between pairs of
elements across the clusters (e.g. average-link
clustering). A drawback of this approach is that
the existence of a single pair of very similar
elements might unduly cause the merger of two
clusters. An alternative considers the number of
pairs of elements whose similarity exceeds a
certain threshold (Guha, Rastogi, Kyuseok
1998). However, this may cause undesirable
mergers when there are a large number of pairs
whose similarities barely exceed the threshold.
Chameleon clustering combines the two
approaches.

K-means clustering is often used on large data
sets since its complexity is linear in n, the
number of elements to be clustered. K-means is
a family of partitional clustering algorithms that
iteratively assigns each element to one of K
clusters according to the centroid closest to it
and recomputes the centroid of each cluster as
the average of the cluster�s elements. K-means

has complexity O(K×T×n) and is efficient for
many clustering tasks. Because the initial
centroids are randomly selected, the resulting
clusters vary in quality. Some sets of initial
centroids lead to poor convergence rates or poor
cluster quality.

Bisecting K-means (Steinbach, Karypis,
Kumar 2000), a variation of K-means, begins
with a set containing one large cluster consisting
of every element and iteratively picks the largest
cluster in the set, splits it into two clusters and
replaces it by the split clusters. Splitting a cluster
consists of applying the basic K-means
algorithm α times with K=2 and keeping the
split that has the highest average element-
centroid similarity.

Hybrid clustering algorithms combine
hierarchical and partitional algorithms in an
attempt to have the high quality of hierarchical
algorithms with the efficiency of partitional
algorithms. Buckshot (Cutting, Karger,
Pedersen, Tukey 1992) addresses the problem of
randomly selecting initial centroids in K-means
by combining it with average-link clustering.
Buckshot first applies average-link to a random
sample of n elements to generate K clusters. It
then uses the centroids of the clusters as the
initial K centroids of K-means clustering. The
sample size counterbalances the quadratic
running time of average-link to make Buckshot
efficient: O(K×T×n + nlogn). The parameters K
and T are usually considered to be small
numbers.

3 Word Similarity
Following (Lin 1998), we represent each word
by a feature vector. Each feature corresponds to
a context in which the word occurs. For
example, �threaten with __� is a context. If the
word handgun occurred in this context, the
context is a feature of handgun. The value of the
feature is the pointwise mutual information
(Manning and Schütze 1999 p.178) between the
feature and the word. Let c be a context and
Fc(w) be the frequency count of a word w
occurring in context c. The pointwise mutual
information between c and w is defined as:

()

() ()

N

jF

N

wF
N

wF

cw
j

c
i

i

c

mi ∑
×

∑
=,

where N = ()∑∑
i j

i jF is the total frequency

counts of all words and their contexts. A well-
known problem with mutual information is that
it is biased towards infrequent words/features.
We therefore multiplied miw,c with a discounting
factor:

()
()

() ()

() () 1
1

+

×
+

∑ ∑

∑ ∑

i j
ci

i j
ci

c

c

jF,wFmin

jF,wFmin

wF
wF

We compute the similarity between two words
wi and wj using the cosine coefficient (Salton and
McGill 1983) of their mutual information
vectors:

()
∑∑

∑
×

×
=

c
cw

c
cw

c
cwcw

ji

ji

ji

mimi

mimi
w,wsim

22

4 CBC Algorithm
CBC consists of three phases. In Phase I, we
compute each element�s top-k similar elements.
In our experiments, we used k = 20. In Phase II,
we construct a collection of tight clusters, where
the elements of each cluster form a committee.
The algorithm tries to form as many committees
as possible on the condition that each newly
formed committee is not very similar to any
existing committee. If the condition is violated,
the committee is simply discarded. In the final
phase of the algorithm, each element is assigned
to its most similar cluster.

4.1. Phase I: Find top-similar elements
Computing the complete similarity matrix
between pairs of elements is obviously
quadratic. However, one can dramatically reduce
the running time by taking advantage of the fact
that the feature vector is sparse. By indexing the
features, one can retrieve the set of elements that
have a given feature. To compute the top similar
words of a word w, we first sort w’s features
according to their mutual information with w.
We only compute pairwise similarities between
w and the words that share a high mutual
information feature with w.

4.2. Phase II: Find committees
The second phase of the clustering algorithm
recursively finds tight clusters scattered in the
similarity space. In each recursive step, the

algorithm finds a set of tight clusters, called
committees, and identifies residue elements that
are not covered by any committee. We say a
committee covers an element if the element�s
similarity to the centroid of the committee
exceeds some high similarity threshold. The
algorithm then recursively attempts to find more
committees among the residue elements. The
output of the algorithm is the union of all
committees found in each recursive step. The
details of Phase II are presented in Figure 1.

In Step 1, the score reflects a preference for
bigger and tighter clusters. Step 2 gives
preference to higher quality clusters in Step 3,
where a cluster is only kept if its similarity to all
previously kept clusters is below a fixed
threshold. In our experiments, we set θ1 = 0.35.

Input: A list of elements E to be clustered, a
similarity database S from Phase I, thresh-
olds θ1 and θ2.

Step 1: For each element e ∈ E
 Cluster the top similar elements of e from S

using average-link clustering.
 For each cluster discovered c compute the

following score: |c| × avgsim(c), where
|c| is the number of elements in c and
avgsim(c) is the average pairwise simi-
larity between elements in c.

 Store the highest-scoring cluster in a list L.
Step 2: Sort the clusters in L in descending order of

their scores.

Step 3: Let C be a list of committees, initially
empty.

 For each cluster c ∈ L in sorted order
 Compute the centroid of c by averaging the

frequency vectors of its elements and
computing the mutual information vector
of the centroid in the same way as we did
for individual elements.

 If c�s similarity to the centroid of each
committee previously added to C is be-
low a threshold θ1, add c to C.

Step 4: If C is empty, we are done and return C.

Step 5: For each element e ∈ E
 If e�s similarity to every committee in C is

below threshold θ2, add e to a list of resi-
dues R.

Step 6: If R is empty, we are done and return C.
 Otherwise, return the union of C and the

output of a recursive call to Phase II us-
ing the same input except replacing E
with R.

Output: A list of committees.

Figure 1. Phase II of CBC.

Step 4 terminates the recursion if no committee
is found in the previous step. The residue
elements are identified in Step 5 and if no
residues are found, the algorithm terminates;
otherwise, we recursively apply the algorithm to
the residue elements.

Each committee that is discovered in this
phase defines one of the final output clusters of
the algorithm.

4.3. Phase III: Assign elements to clusters
In Phase III, every element is assigned to the
cluster containing the committee to which it is
most similar. This phase resembles K-means in
that every element is assigned to its closest
centroid. Unlike K-means, the number of
clusters is not fixed and the centroids do not
change (i.e. when an element is added to a
cluster, it is not added to the committee of the
cluster).

5 Evaluation Methodology
Many cluster evaluation schemes have been
proposed. They generally fall under two
categories:

• comparing cluster outputs with manually
generated answer keys (hereon referred to
as classes); or

• embedding the clusters in an application
and using its evaluation measure.

An example of the first approach considers the
average entropy of the clusters, which measures
the purity of the clusters (Steinbach, Karypis,
and Kumar 2000). However, maximum purity is
trivially achieved when each element forms its
own cluster. An example of the second approach
evaluates the clusters by using them to smooth
probability distributions (Lee and Pereira 1999).

Like the entropy scheme, we assume that there
is an answer key that defines how the elements
are supposed to be clustered. Let C be a set of
clusters and A be the answer key. We define the
editing distance, dist(C, A), as the number of
operations required to make C consistent with A.
We say that C is consistent with A if there is a
one to one mapping between clusters in C and
the classes in A such that for each cluster c in C,
all elements of c belong to the same class in A.
We allow two editing operations:

• merge two clusters; and
• move an element from one cluster to

another.

Let B be the baseline clustering where each
element is its own cluster. We define the quality
of a set of clusters C as follows:

()
()ABdist

ACdist
,
,1−

Suppose the goal is to construct a clustering
consistent with the answer key. This measure
can be interpreted as the percentage of
operations saved by starting from C versus
starting from the baseline.

We aim to construct a clustering consistent
with A as opposed to a clustering identical to A
because some senses in A may not exist in the
corpus used to generate C. In our experiments,
we extract answer classes from WordNet. The
word dog belongs to both the Person and Animal
classes. However, in the newspaper corpus, the
Person sense of dog is at best extremely rare.
There is no reason to expect a clustering
algorithm to discover this sense of dog. The
baseline distance dist(B, A) is exactly the
number of elements to be clustered.

We made the assumption that each element
belongs to exactly one cluster. The transforma-
tion procedure is as follows:

1. Suppose there are m classes in the answer
key. We start with a list of m empty sets,
each of which is labeled with a class in the
answer key.

2. For each cluster, merge it with the set
whose class has the largest number of
elements in the cluster (a tie is broken
arbitrarily).

3. If an element is in a set whose class is not
the same as one of the element�s classes,
move the element to a set where it be-
longs.

dist(C, A) is the number of operations performed
using the above transformation rules on C.

a
b
e

c
d
e

a
c
d

b e

b

a
c
d
e

a
b

c
d
e

A) B)

C) D) E)

Figure 2. An example of applying the transformation rules
to three clusters. A) The classes in the answer key; B) the
clusters to be transformed; C) the sets used to reconstruct
the classes (Rule 1); D) the sets after three merge
operations (Step 2); E) the sets after one move operation
(Step 3).

Figure 2 shows an example. In D) the cluster
containing e could have been merged with either
set (we arbitrarily chose the second). The total
number of operations is 4.

6 Experimental Results
We generated clusters from a news corpus using
CBC and compared them with classes extracted
from WordNet (Miller 1990).

6.1. Test Data
To extract classes from WordNet, we first
estimate the probability of a random word
belonging to a subhierarchy (a synset and its
hyponyms). We use the frequency counts of
synsets in the SemCor corpus (Landes, Leacock,
Tengi 1998) to estimate the probability of a
subhierarchy. Since SemCor is a fairly small
corpus, the frequency counts of the synsets in
the lower part of the WordNet hierarchy are very
sparse. We smooth the probabilities by assuming
that all siblings are equally likely given the
parent. A class is then defined as the maximal
subhierarchy with probability less than a
threshold (we used e-2).

We used Minipar 1 (Lin 1994), a broad-
coverage English parser, to parse about 1GB
(144M words) of newspaper text from the TREC
collection (1988 AP Newswire, 1989-90 LA
Times, and 1991 San Jose Mercury) at a speed
of about 500 words/second on a PIII-750 with
512MB memory. We collected the frequency
counts of the grammatical relationships
(contexts) output by Minipar and used them to
compute the pointwise mutual information
values from Section 3. The test set is constructed
by intersecting the words in WordNet with the
nouns in the corpus whose total mutual
information with all of its contexts exceeds a
threshold m. Since WordNet has a low coverage
of proper names, we removed all capitalized
nouns. We constructed two test sets: S13403
consisting of 13403 words (m = 250) and S3566
consisting of 3566 words (m = 3500). We then
removed from the answer classes the words that
did not occur in the test sets. Table 1 summa-
rizes the test sets. The sizes of the WordNet
classes vary a lot. For S13403 there are 99 classes
that contain three words or less and the largest
class contains 3246 words. For S3566, 78 classes
have three or less words and the largest class
contains 1181 words.

1Available at www.cs.ualberta.ca/~lindek/minipar.htm.

6.2. Cluster Evaluation
We clustered the test sets using CBC and the
clustering algorithms of Section 2 and applied
the evaluation methodology from the previous
section. Table 2 shows the results. The columns
are our editing distance based evaluation
measure. Test set S3566 has a higher score for all
algorithms because it has a higher number of
average features per word than S13403.

For the K-means and Buckshot algorithms, we
set the number of clusters to 250 and the
maximum number of iterations to 8. We used a
sample size of 2000 for Buckshot. For the
Bisecting K-means algorithm, we applied the
basic K-means algorithm twice (α = 2 in Section
2) with a maximum of 8 iterations per split. Our
implementation of Chameleon was unable to
complete clustering S13403 in reasonable time due
to its time complexity.

Table 2 shows that K-means, Buckshot and
Average-link have very similar performance.
CBC outperforms all other algorithms on both
data sets.

6.3. Manual Inspection
Let c be a cluster and wn(c) be the WordNet
class that has the largest intersection with c. The
precision of c is defined as:

Table 1. A description of the test sets in our experiments.

DATA
SET

TOTAL
WORDS

m Average #
of Features

TOTAL
CLASSES

S13403 13403 250 740.8 202

S3566 3566 3500 2218.3 150

Table 1. A description of the test sets in our experiments.

DATA
SET

TOTAL
WORDS

M Avg. Features
per Word

TOTAL
CLASSES

S13403 13403 250 740.8 202

S3566 3566 3500 2218.3 150

Table 2. Cluster quality (%) of several clustering
algorithms on the test sets.

ALGORITHM S13403 S3566

CBC 60.95 65.82

K-means (K=250) 56.70 62.48

Buckshot 56.26 63.15

Bisecting K-means 43.44 61.10

Chameleon n/a 60.82

Average-link 56.26 62.62

Complete-link 49.80 60.29

Single-link 20.00 31.74

() ()
c

cwnc
cprecision

∩
=

CBC discovered 943 clusters. We sorted them
according to their precision. Table 3 shows five
of the clusters evenly distributed according to
their precision ranking along with their Top-15
features with highest mutual-information. The
words in the clusters are listed in descending
order of their similarity to the cluster centroid.
For each cluster c, we also include wn(c). The
underlined words are in wn(c). The first cluster
is clearly a cluster of firearms and the second
one is of pests. In WordNet, the word pest is
curiously only under the person hierarchy. The
words stopwatch and houseplant do not belong
to the clusters but they have low similarity to
their cluster centroid. The third cluster
represents some kind of control. In WordNet, the
legal power sense of jurisdiction is not a
hyponym of social control as are supervision,
oversight and governance. The fourth cluster is
about mixtures. The words blend and mix as the
event of mixing are present in WordNet but not
as the result of mixing. The last cluster is about
consumers. Here is the consumer class in
WordNet 1.5:

addict, alcoholic, big spender, buyer, client,
concert-goer, consumer, customer, cutter, diner,
drinker, drug addict, drug user, drunk, eater,
feeder, fungi, head, heroin addict, home buyer,
junkie, junky, lush, nonsmoker, patron, policy-
holder, purchaser, reader, regular, shopper,
smoker, spender, subscriber, sucker, taker, user,
vegetarian, wearer

In our cluster, only the word client belongs to
WordNet�s consumer class. The cluster is ranked
very low because WordNet failed to consider
words like patient, tenant and renter as
consumers.

Table 3 shows that even the lowest ranking
CBC clusters are fairly coherent. The features
associated with each cluster can be used to
classify previously unseen words into one or
more existing clusters.

Table 4 shows the clusters containing the word
cell that are discovered by various clustering
algorithms from S13403. The underlined words
represent the words that belong to the cell class
in WordNet. The CBC cluster corresponds
almost exactly to WordNet�s cell class. K-means
and Buckshot produced fairly coherent clusters.
The cluster constructed by Bisecting K-means is
obviously of inferior quality. This is consistent
with the fact that Bisecting K-means has a much
lower score on S13403 compared to CBC, K-
means and Buckshot.

Table 3. Five of the 943 clusters discovered by CBC from S13403 along with their features with top-15 highest mutual
information and the WordNet classes that have the largest intersection with each cluster.

RANK MEMBERS TOP-15 FEATURES wn(c)

1 handgun, revolver, shotgun, pistol, rifle,
machine gun, sawed-off shotgun,
submachine gun, gun, automatic pistol,
automatic rifle, firearm, carbine,
ammunition, magnum, cartridge,
automatic, stopwatch

__ blast, barrel of __ , brandish __, fire __, point __,
pull out __, __ discharge, __ fire, __ go off, arm with
__, fire with __, kill with __, open fire with __, shoot
with __, threaten with __

artifact / artifact

236 whitefly, pest, aphid, fruit fly, termite,
mosquito, cockroach, flea, beetle, killer
bee, maggot, predator, mite, houseplant,
cricket

__ control, __ infestation, __ larvae, __ population,
infestation of __, specie of __, swarm of __ , attract
__, breed __, eat __, eradicate __, feed on __, get rid
of __, repel __, ward off __

animal / animate being /
beast / brute / creature /
fauna

471 supervision, discipline, oversight,
control, governance, decision making,
jurisdiction

breakdown in __, lack of __ , loss of __, assume __,
exercise __, exert __, maintain __, retain __, seize __,
tighten __, bring under __, operate under __, place
under __, put under __, remain under __

act / human action /
human activity

706 blend, mix, mixture, combination,
juxtaposition, combine, amalgam,
sprinkle, synthesis, hybrid, melange

dip in __, marinate in __, pour in __, stir in __, use in
__, add to __, pour __, stir __, curious __, eclectic __,
ethnic __, odd __, potent __, unique __, unusual __

group / grouping

941 employee, client, patient, applicant,
tenant, individual, participant, renter,
volunteer, recipient, caller, internee,
enrollee, giver

benefit for __, care for __, housing for __, benefit to
__, service to __, filed by __, paid by __, use by __,
provide for __, require for --, give to __, offer to __,
provide to __, disgruntled __, indigent __

worker

7 Conclusion
We presented a clustering algorithm, CBC, for
automatically discovering concepts from text. It
can handle a large number of elements, a large
number of output clusters, and a large sparse
feature space. It discovers clusters using well-
scattered tight clusters called committees. In our
experiments, we showed that CBC outperforms
several well known hierarchical, partitional, and
hybrid clustering algorithms in cluster quality.
For example, in one experiment, CBC
outperforms K-means by 4.25%.

By comparing the CBC clusters with WordNet
classes, we not only find errors in CBC, but also
oversights in WordNet.

Evaluating cluster quality has always been a
difficult task. We presented a new evaluation
methodology that is based on the editing
distance between output clusters and classes
extracted from WordNet (the answer key).

Acknowledgements
The authors wish to thank the reviewers for their
helpful comments. This research was partly
supported by Natural Sciences and Engineering
Research Council of Canada grant OGP121338
and scholarship PGSB207797.

References
Cutting, D. R.; Karger, D.; Pedersen, J.; and Tukey, J. W. 1992.

Scatter/Gather: A cluster-based approach to browsing large
document collections. In Proceedings of SIGIR-92. pp. 318�329.
Copenhagen, Denmark.

Guha, S.; Rastogi, R.; and Kyuseok, S. 1999. ROCK: A robust
clustering algorithm for categorical attributes. In Proceedings of
ICDE’99. pp. 512�521. Sydney, Australia.

Jain, A. K.; Murty, M. N.; and Flynn, P. J. 1999. Data Clustering: A
Review. ACM Computing Surveys 31(3):264�323.

Kaufmann, L. and Rousseeuw, P. J. 1987. Clustering by means of
medoids. In Dodge, Y. (Ed.) Statistical Data Analysis based on the
L1 Norm. pp. 405�416. Elsevier/North Holland, Amsterdam.

Karypis, G.; Han, E.-H.; and Kumar, V. 1999. Chameleon: A
hierarchical clustering algorithm using dynamic modeling. IEEE
Computer: Special Issue on Data Analysis and Mining 32(8):68�75.

Landes, S.; Leacock, C.; and Tengi, R. I. 1998. Building Semantic
Concordances. In WordNet: An Electronic Lexical Database, edited
by C. Fellbaum. pp. 199-216. MIT Press.

Leacock, C.; Chodorow, M.; and Miller; G. A. 1998. Using corpus
statistics and WordNet relations for sense identification.
Computational Linguistics, 24(1):147-165.

Lee, L. and Pereira, F. 1999. Distributional similarity models:
Clustering vs. nearest neighbors. In Proceedings of ACL-99. pp. 33-
40. College Park, MD.

Lin, D. 1994. Principar - an Efficient, Broad-Coverage, Principle-Based
Parser. In Proceedings of COLING-94. pp. 42-48. Kyoto, Japan.

Lin, D. 1998. Automatic retrieval and clustering of similar words. In
Proceedings of COLING/ACL-98. pp. 768-774. Montreal, Canada.

Lin, D. and Pantel, P. 2001. Induction of semantic classes from natural
language text. In Proceedings of SIGKDD-01. pp. 317-322. San
Francisco, CA.

Manning, C. D. and Schütze, H. 1999. Foundations of Statistical
Natural Language Processing. MIT Press.

McQueen, J. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of 5th Berkeley Symposium
on Mathematics, Statistics and Probability, 1:281-298.

Miller, G. 1990. WordNet: An Online Lexical Database. International
Journal of Lexicography, 1990.

Pasca, M. and Harabagiu, S. 2001. The informative role of WordNet in
Open-Domain Question Answering. In Proceedings of NAACL-01
Workshop on WordNet and Other Lexical Resources. pp. 138-143.
Pittsburgh, PA.

Salton, G. and McGill, M. J. 1983. Introduction to Modern Information
Retrieval. McGraw Hill.

Steinbach, M.; Karypis, G.; and Kumar, V. 2000. A comparison of
document clustering techniques. Technical Report #00-034.
Department of Computer Science and Engineering, University of
Minnesota.s

Table 4. The clusters representing the cell concept for several clustering algorithms using S13403.

ALGORITHMS CLUSTERS THAT HAVE THE LARGEST INTERSECTION WITH THE WORDNET CELL CLASS.

CBC white blood cell, red blood cell, brain cell, cell, blood cell, cancer cell, nerve cell, embryo, neuron

K-means cadaver, meteorite, secretion, receptor, serum, handwriting, cancer cell, thyroid, body part, hemoglobin, red blood
cell, nerve cell, urine, gene, chromosome, embryo, plasma, heart valve, saliva, ovary, white blood cell, intestine,
lymph node, sperm, heart, colon, cell, blood, bowel, brain cell, central nervous system, spinal cord, blood cell,
cornea, bladder, prostate, semen, brain, spleen, organ, nervous system, pancreas, tissue, marrow, liver, lung,
marrow, kidney

Buckshot cadaver, vagina, meteorite, human body, secretion, lining, handwriting, cancer cell, womb, vein, bloodstream,
body part, eyesight, polyp, coronary artery, thyroid, membrane, red blood cell, plasma, gene, gland, embryo,
saliva, nerve cell, chromosome, skin, white blood cell, ovary, sperm, uterus, blood, intestine, heart, spinal cord,
cell, bowel, colon, blood vessel, lymph node, brain cell, central nervous system, blood cell, semen, cornea,
prostate, organ, brain, bladder, spleen, nervous system, tissue, pancreas, marrow, liver, lung, bone marrow, kidney

Bisecting K-means picket line, police academy, sphere of influence, bloodstream, trance, sandbox, downtown, mountain, camera,
boutique, kitchen sink, kiln, embassy, cellblock, voting booth, drawer, cell, skylight, bookcase, cupboard,
ballpark, roof, stadium, clubhouse, tub, bathtub, classroom, toilet, kitchen, bathroom,

WordNet Class blood cell, brain cell, cancer cell, cell, cone, egg, nerve cell, neuron, red blood cell, rod, sperm, white blood cell

