
A Statistical Corpus-Based Term Extractor 1

A Statistical Corpus-Based Term Extractor

Patrick Pantel and Dekang Lin

Department of Computing Science
University of Alberta

Edmonton, Alberta T6G 2H1 Canada
{ppantel, lindek}@cs.ualberta.ca

Abstract. Term extraction is an important problem in natural language process-
ing. In this paper, we propose a language independent statistical corpus-based
term extraction algorithm. In previous approaches, evaluation has been subjec-
tive, at best relying on a lexicographer’s judgement. We evaluate the quality of
our term extractor by assessing its predictiveness on an unseen corpus using
perplexity. Second, we evaluate the precision and recall of our extractor by
comparing the Chinese words in a segmented corpus with the words extracted
by our system.

1 Introduction

Term extraction is an important problem in natural language processing. The goal is
to extract sets of words with exact meaning in a collection of text. Several linguists
have argued that the base semantic unit of language are these terms. Applications of
automatic term extraction include machine translation, automatic indexing, building
lexical knowledge bases, and information retrieval.

In previous systems, evaluation has relied mostly on human assessments of the
quality of extracted terms. This is problematic since experts often disagree on the
correctness of a term list for a corpus. Consequently, it is difficult to replicate the
evaluation procedure to compare different systems. Furthermore, experts normally
evaluate only a few hundred terms. These tend to be the highest-ranking ones, those
most easily recognizable by lexicographers. A term extraction tool that assists humans
would be more useful if it were able to extract those terms less obvious to humans.
This is difficult to evaluate.

In this paper, we present a language independent statistical corpus-based term ex-
traction algorithm. First, we collect bigram frequencies from a corpus and extract two-
word candidates. After collecting features for each two-word candidate, we use mu-
tual information and log-likelihood ratios to extend them to multi-word terms. We
experiment with both English and Chinese corpora. Using perplexity, we quantify the
definition of a term and we obtain a comparative evaluation of term extraction algo-
rithms. Furthermore, we evaluate the precision and recall of our term extractor by
comparing the words in a segmented Chinese corpus with the words extracted by our
system. Our evaluation methodology circumvents the problems encountered by previ-
ously used human evaluations. It also provides a basis for comparing term extraction
systems.
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2 Previous Work

There have been several approaches to automatic term extraction mostly for technical
terminology and noun phrases. Many successful algorithms are statistical corpus-
based approaches [2], [5], [10].

Several term extraction tools have been developed. Dagan and Church [4] proposed
a tool that assists terminologists in identifying and translating technical terms. Smadja
[19] developed a lexicographic tool, Xtract, which extracts collocations from English.
Fung [11] later extended this model to extract words from Chinese corpora. The latter
work was the first to attempt an automatic evaluation of term extraction. Previous
methods used human experts to evaluate their extracted term lists. Fung first uses a
tagger to retrieve Chinese words. Then, the extraction system is evaluated by counting
the number of these words retrieved by the term extractor.

More recently, Eklund and Wille [8] describe an algorithm that utilizes discourse
theory to extract terms from single-subject texts. Hybrid approaches combining statis-
tical techniques with linguistic knowledge (syntax and morphology) have also
emerged [14], [17], [18].

3 Term Extraction Algorithm

Our term extractor is a two-phase statistical corpus-based algorithm that extracts
multi-word terms from corpora of any language (we experiment with English and
Chinese corpora in this paper).

Our algorithm uses two metrics to measure the information between terms (or
words): mutual-information (mi) and log-likelihood (logL) [7]. Mutual information is
defined as:
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where x and y are words or terms. Mutual information is highest when all occurrences
of x and y are adjacent to each other and deteriorates with low frequency counts. To
alleviate this problem, we use a second measure, log-likelihood, which is more robust
to low frequency events. Let C(x, y) be the frequency of two terms, x and y, occurring
adjacent in some corpus (where the asterix (*) represents a wildcard). Then, the log-
likelihood ratio of x and y is defined as:
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where k1 = C(x, y), n1 = C(x, *), k2 = C(¬ x, y), n2 = C(¬ x, *), and:

( ) ( ) ( ) ( )pknpknkpll −−+= 1loglog,, (3)
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The log-likelihood ratio is highest when all occurrences of x and y are adjacent to
each other (as in mutual information). However, the ratio is also high for two frequent
terms that are rarely adjacent. For example, the word pair (the, the) has a very high
log-likelihood ratio in English even though it rarely occurs (mostly as a typographical
error).

To overcome the shortcomings of mutual information and log-likelihood, we pro-
pose a hybrid metric. The score S for a pair (x, y) is defined as:
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We use the mutual information as an initial filter to eliminate term pairs such as
(the, the). Below, we describe each phase of our term extraction algorithm.

3.1 Candidate Extraction

Figure 1 outlines the first phase of our term extraction algorithm. It extracts a list of
two-word candidate terms from a corpus of any language. Optimally, this list contains
all two-word terms as well as fragments of all multi-word terms.

In Step 1, we construct a proximity database consisting of the frequency counts for
each adjacent pair of words in the corpus [16].

The purpose of Step 2 is to eliminate frequency counts for those adjacent words
that are separated by a phrasal (word) boundary [1], [20]. A phrasal boundary sepa-
rates words that are not part of a same term. Given a 4-gram (w, x, y, z), we assume
there is a phrasal boundary between x and y if mi(x, y) < mi(w, x) − k or mi(x, y) <
mi(y, z) − k, for some fixed constant k.

Step 3 performs the selection of two-word candidates. An adjacent pair of words is
selected if its frequency and score surpasses a fixed threshold. We experimentally set
minCount to 3, minLogL to 5, and minMutInfo to 2.5.

Input: A corpus L in any language.

Step 1: Collect bigram frequencies for L in a proximity database DB.

Step 2: For all 4-grams w x y z in L, remove one count for x y in DB if
- mi(x, y) < mi(w, x) − k or
- mi(x, y) < mi(y, z) − k.

Step 3: For all entries (x, y) in DB, add (x, y) to a list T if:
- C(x, y) > minCount
- S(x, y) > minLogL

Output: The list T of candidate multi-word terms.

Fig. 1. Candidate extraction algorithm.
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3.2 Multi-Word Term Extraction

The input to the second phase of the term extraction algorithm is the proximity data-
base and the list of two-word candidates extracted from phase one. The goal is to
extend each candidate to multi-word terms (two words or more up to a fixed size).
Below we describe the multi-word term extraction algorithm in two parts: the main
extraction driver and the recursive term extension algorithm.

3.2.1 Extraction Driver
Figure 2 outlines the main driver for the multi-word term extraction algorithm.

The input proximity database consists of the bigram frequencies of a corpus. In the
first step of the algorithm, we update this database with new features. Given a two-
word candidate c, we consider all possible expansions e of c containing no more than
k words on each side. We then count the frequency between e and all its adjacent
words. Later, in our expansion algorithm, we will use these frequencies to determine
whether e should expand to any of these adjacent words.

For example, suppose k = 2 and we have a candidate drop-down that occurred in a
corpus in the following contexts:

! …from the drop-down list in…
! …Network Logon drop-down list when…

The features extracted for the first context are: (drop down, list), (drop down list,
in), (the, drop down), (the drop down, list), (the drop down list, in), (from, the drop
down), (from the drop down, list), and (from the drop down list, in).

In Step 2 of the algorithm, we remove those features that occurred only a fixed
small number of times. In our experiments, we found that most extracted features
occurred only once. This step significantly reduces the size of the proximity database
and removes spurious features.

Input: A list T of two-word candidates for a corpus L in any language and a proximity da-
tabase DB consisting of bigram frequencies for L.

Step 1: Accumulate features for candidate terms
For each candidate c in T

For each w1 w2 … c … w2k-1 w2k in L
Add all possible substrings involving c in DB.

Step 2: Update the proximity database
Remove each entry in DB that has frequency < minFreq.

Step 3: Extend two-word candidates into an initially empty list E
For each candidate c in T

extend(c, E, DB) – see Figure 3
if most occurrences of c in the corpus have not been extended then add c to E.

Output: The list E of extracted multi-word terms.

Fig. 2. Multi-word term extraction algorithm.



A Statistical Corpus-Based Term Extractor 5

Step 3 of Figure 2 uses the added features in the proximity database to extend can-
didate terms (see the next section for a description of the extension algorithm). We are
then left only with deciding whether or not a two-word candidate c is a term. We
verify this by obtaining the ratio of the frequencies of extended terms containing c as
a substring to the frequency of c. If it is large, then this indicates that most occur-
rences of c in the corpus were also occurrences of an extended phrase of c. So, we
only extract c if the ratio is small.

3.2.2 Term Extension Algorithm
Figure 3 describes the recursive term extension algorithm. The goal is to extend an
input term c using the updated proximity database from Section 3.2.1.

In the first step of the algorithm, we build a sorted list G of all good extensions of c
(the best extensions are first in the list). Let (c1, c2) be the two terms that compose c.
For a two-word candidate, the first and second words are c1 and c2, respectively. A
word w is a good extension of c if S(w, c) > S(c1, c2) − k, for some fixed threshold k.
The frequency counts required to compute S are stored in the proximity database. The
list G then contains all 1-word extensions from c. But, these might still be term frag-
ments.

Step 2 is the recursive step of the algorithm. We loop through each good extension
g in G. Let p be the extension of c with g (i.e. either c g or g c). Before processing p,
we require that p is not a substring of an extracted term (i.e. g has not been previously
extended). For example, suppose that Jones Computer and Computer Publishing are
both two-word candidates and that the former is extended to Jones Computer Publish-
ing. Now, suppose that we are attempting to extend Computer Publishing with g =
Jones. Since Jones Computer Publishing has already been extracted, we do not want
to extend Computer Publishing with g = Jones.

If p is not a substring of an extracted phrase, then we try to extend p recursively. If
p is successfully extended to an even larger term, then we do not add p to E. However,
if p is not extended then p is classified as a term and added to E.

Input: A multi-word term c to extend into a list E and a proximity database DB consisting
of bigram frequencies of a corpus L and features extracted from Step 2 of Figure 2.
Let c1 and c2 be the terms merged to create c.

Step 1: For each word w adjacent to c in L
If S(w, c) > S(c1, c2) − k, add w to a list G sorted in decreasing order of S(w, c).

Step 2: For each possible extension g in G
Let p be the extended phrase (c g) or (g c)
If p is not a substring of a term in E

If (not extend(p) and filter(p)) add p to E

Step 3: If any p’s were extended or added to E then return true, otherwise return false.

Output: The list of extracted multi-word terms is appended to E and a boolean value indicat-
ing whether or not at least one extension was made is returned.

Fig. 3. Recursive algorithm that extends a given multi-word term to larger terms.
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So far, the algorithm is purely statistical. However, the final part of Step 2 provides
the option of using linguistic knowledge to filter the extracted terms. For example, if
the statistical processor treats punctuation marks as words, it is probable that some
extended features will contain punctuation marks. This filter allows for easy removal
of such erroneous terms.

The final step of the extension algorithm simply determines and returns whether or
not c was extracted in whole or in part as a term.

4 Experimental Results

Below, we evaluate our term extractor using perplexity, precision and recall.

4.1 Perplexity

Perplexity measures how well a model predicts some data. In natural language, we
often use perplexity to compare the predictiveness of different language models over a
corpus. Let W be a random variable describing words with an unknown probability
mass function p(w) and let C(w) be the frequency count of a word or term w in a lan-
guage. Also, let m(w) = C(w) / C(*) be an approximation of p(w) (a unigram model),
where * represents a wildcard. Since W is stationary and ergodic, the cross-entropy of
W, H(p, m), is defined as [3]:
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Cross-entropy gives us an upper bound on the true entropy of W, H(p, m) ≥ H(W).
Standard unigram models approximate the probability of a sequence of words by
computing the product of the word probabilities (i.e. assume words are independent).
We augment this model to also describe terms by computing the probability of a se-
quence of words as the joint probability of the terms and words in the sequence.

Using our term extractor, we extract a list of terms from a training corpus. To com-
pute m, we require the frequency counts of all words and terms. We obtain these fre-
quencies by counting all terms and words that are not terms in the training corpus.
Using a testing corpus L with a finite number of words n, we approximate the cross-
entropy H(p, m) from formula (5) with:

Table 1. 10-fold cross-validation evaluation of the perplex-
ity of our term extraction system.

CORPUS UNIGRAM

PERPLEXITY

SP
PERPLEXITY

SP WITH

MUT-INFO

UNTS 647.01 523.93 547.94

NAG 706.54 605.59 654.94
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where t is a term or a word in L. The better the list of extracted terms, the more pre-
dictive the model will be of the testing corpus (i.e. the lower H(p, m) will be). Hence,
this model can serve to perform a comparative evaluation of different term extraction
algorithms. A related measure, perplexity, is defined as:

),(2),( mpHmpperplexity = (7)

4.1.1 Analysis
We used two corpora for evaluating the perplexity of our system: UNTS [12] consist-
ing of 439,053 words and NAG [15] consisting of 117,582 words. We divided each
corpus into 10 equal parts and performed ten-fold cross validation to test our system’s
perplexity. We used Witten-Bell discounting [21] to estimate the probability of un-
seen events. Table 1 presents a comparison between our system’s perplexity (SP) and
the perplexity of a unigram model (i.e. with an empty term list). On both corpora, the
term list generated by our system significantly reduces perplexity.

We also experimented with a different expansion function for our term extraction
algorithm. Instead of using the log-likelihood ratio as in Step 1 of the algorithm pre-
sented in Figure 3, we used the mutual information metric. The third column of Table
1 shows the result. This metric performs much worse on the smaller NAG corpus.
This supports the claim from Section 3 that mutual information deteriorates with
sparse data.

Finally, we divided the UNTS corpus in two equal parts (even vs. odd numbered
chapters) and used one for training and the other for testing. We evaluated the effect
that specific phrases had on the perplexity of our system. Figure 4 shows the variation
in perplexity when each phrase extracted by our system is individually extracted. The
horizontal line represents the perplexity of the standard unigram model on this test
corpus, which is 664.1. The highest spike is caused by the term boot record. This is

Term Effect on Perplexity

645

650

655

660

665

1 41 81 121 161 201 241 281

Ranked Terms by our Extractor

Fig. 4. The effect on perplexity when each ranked term is added individually. The
left-most points represent the highest ranked terms.
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because almost all of its occurrences were in chapters 9 and 29 (part of the training
corpus). Finally, we manually created a list of 5 bad terms from a training corpus for
UNTS. As expected the perplexity on the test set increased to 664.3.

4.2 Precision and Recall

Making use of a segmented Chinese corpus, we compute the precision and recall of
our term extractor. Chinese text does not contain word boundaries and most Chinese
words are one or two characters long. In fact, since Chinese characters carry a lot
more information than English characters, the average length of a Chinese word con-
tains 1.533 characters [12].

The task of identifying words in Chinese text is very similar to identifying phrasal
words in English if one treats each Chinese character as a word. In fact, our term
extractor can be applied straightforwardly to Chinese text.

Our extractor can be evaluated as retrieving multi-character words from a seg-
mented Chinese corpus. The target words for the retrieval task are multi-character
words in the segmented corpus with a frequency above a certain threshold. The per-
centage of words in the target set that are extracted by the term extractor is the recall.
We measure the precision of the extractor by computing the percentage of the ex-
tracted words among the words in the segmented corpus (including those with fre-
quency lower than the threshold).

4.2.1 Analysis
The test data is a cleaned up version of a segmented Chinese corpus [12]. It contains
about 10MB of Chinese news text. We extracted 10,268 words from the corpus.
Among them, 6,541 are words in the segmented corpus. A further 1,096 of our ex-
tracted words are found in HowNet, a Chinese lexical knowledge base [6]. This gives
an overall precision of 74.4% for our extraction algorithm. This is a significant im-
provement over the precision of 59.3% given by Fung’s extractor [11]. We also

Precision for Top-k Extracted Terms
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Fig. 5. The precision of the top-k words extracted by our term extractor.
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evaluated the precision of the top-k extracted words sorted by their log-likelihood
ratio. Figure 5 shows the result.

Since the segmented corpus is generated automatically and is only lightly cleaned
up, it contains many errors. The segmentor tends to break words aggressively. Upon
inspection of the remaining 2,631 words not found in the corpus nor HowNet, we
found many correct terms such as those shown in Table 2. Many of these words are
names of persons and organizations, which are not readily found in lexicons such as
HowNet.

There are 8,582 words in the segmented corpus that occurred at least 10 times. We
extracted 5,349 of these, which gives an overall recall of 62.3%. Again, this is a sig-
nificant improvement over the recall of 14% given by Fung’s extractor [11]. Figure 6
shows the result of evaluating recall for sets with a fixed minimum frequency.

5 Conclusion and Future Work

In this paper, we presented a language independent statistical corpus-based term ex-
tractor. It improved the perplexity of a testing corpus by 16-23% and achieved 74.4%
precision and 62.3% recall. Of the top 1000 terms retrieved by our system, we
achieved 92.6% precision. Also, we recalled 89.1% of the terms that occurred at least
200 times in a corpus.

Our evaluation methodology provides a significant improvement over the current
dependence on human evaluators for evaluating systems. It allows for easy compari-
son of extraction systems and it measures the precision and recall of a system at dif-
ferent word frequency levels.

A promising extension to our algorithm is to apply similar methods to non-linear
structures such as dependency structures of sentences. The result would be colloca-
tional dependency structures.

Recall vs. Minimum Word Frequency
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Fig. 6. The recall of our term extractor on words in the corpus that
occurred a minimum number of times.
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Table 2. Some terms extracted by our system that are not found in the lexicon nor in the
segmented Chinese corpus.

CHINESE TERM ENGLISH TRANSLATION CHINESE TERM ENGLISH TRANSLATION

��� person name ����� stock index

	
�� special economic zone ���� international treaty

���� technological innovation ���� FIFA

���� farmer's market ����� IOC

�� person name �!"#�� International Red Cross

$%&'� Caribbean region ()�� State Education Commission

*+, person name (-�� State Science Commission

./01� military exercise 23456� US State Secretary Baker

789� person name :6;<=>?� Marxist philosophy

@ABC hard work and plain living
(Chinese idiom)

�DEF�� United Nation Security
Council


