
A Resource Management System for Network
Computing using Java

Muthucumaru Maheswaran
�
, Hongtu Chen � , Satyabrata Pradhan

�
, Patrick Pantel

�
,

Lei Zheng
�
, Rui Min � , and Timothy Groner

�

�
Dept.of ComputerScience � Dept.of ElectricalandComputerEngineering

Universityof Manitoba Universityof Manitoba
Winnipeg, MB R3T 2N2 Winnipeg, MB R3T 2N2

Canada Canada

1. Introduction
A network computing (NC) systemis a virtual sys-

temformedby anetworkedsetof machinesthatarewill-
ing to work togetherby sharingwork loadanddata.The
operationof a NC systemis coordinatedby theresource
management system (RMS). Oneof themajor functions
of an RMS is to assignthe applicationtasksto a target
machinesuchthat theexecutionof theapplicationtasks
arecompletedin a timely fashion.TheRMS canbeop-
timizing differentmetricsto obtainthetask-machineas-
signments[MaA99]. To perform the task-machineas-
signmentin an effective manner, several issuesshould
beaddressedwhile designingtheRMS.

TheRMS shouldbeportable,i.e., it shouldbeable
to executeondifferentplatforms.In thisimplementation,
thisis achievedpartlybyusingJavafor implementingthe
RMS.As thenumberof machinesin theNC systemis in-
creased,scalabilityof theRMSandheterogeneityamong
theconstituentmachinesbecomecritical issues.Further,
asthenumberof machinesis increased,theNC systemis
verylikely to havemachinesthatbelongto severaldiffer-
ent administrative domainsandwith differentcomputa-
tional capabilities.Architecturalenhancementsthatwill
enablethe RMS to dealwith the aforementionedissues
arepresentedin this paper. Other issuesconsideredin
thepaperinclude(a) learningtaskattributes(in particu-
lar executiontimes)from actualexecutiontimesobtained
from previousrunsof theapplication,and(b) remoteac-
cessto input andoutputdatafiles.

In Section2, the architectureof the RMS is pre-
sented. The implementationaldetailsare discussedin
Section3. Section4 investigatesan enhancementthat
makesthebasicarchitecturepresentedin Section2 more
scalable.

2. Architecture of the RMS
Thearchitectureof theRMSdevelopedin thisstudy

is presentedin Figure1. As canbenotedfrom Figure1,
the RMS is madeup of several modules(referredto as
“servers”) thatsupportspecificfunctionality.

Info./Control
Machine

Server (MICS)
Info./Control

Machine

Server (MICS)
Info./Control

Machine

Server (MICS)

Application
Information
Server (AIS)

Resource
Information
Server (RIS)

Scheduling
Server (SS)

Client

...

Figure 1: Architectural block diagram of the
RMS.

The task assignmentfunctionality is performedby
the scheduling server (SS).To exploit theheterogeneity
amongthemachinesthatconstitutetheNC system,it is
necessaryto know the expectedexecutiontimesof the
differentapplicationson thedifferentmachines[SiA96].
This informationis maintainedby theapplication infor-
mation server (AIS). The SS interactswith the AIS to
obtain this information as needed. The schedulingal-
gorithmsusedby the SS also needsthe machineload-
ing status.This informationis collectedandmaintained
by theresource information server (RIS).Thetargetma-
chinesneedto executethe taskssentto themby theSS.
This functionalityis performedby themachine informa-
tion/control server (MICS).

3. Implementation of the RMS
Whena new targetmachinejoins a NC system,the

correspondingMICS server is connectedto the RMS.
Likewise,whena targetmachineleavestheNC system,
the correspondingMICS server will be disconnected
from theRMS. To facilitatethis dynamicentryandexit
of MICS servers,a simple communicationmiddleware
was developed. This middleware containsa message

2

routerthatroutespacketsfrom asourceserver to adesti-
nationserver.

TheSSserveris amulti-threadedserverwheresome
threadsarepre-spawnedandothersarespawnedon de-
mand. The multi-threadingcapabilityof Java is exten-
sively usedin theimplementationof this server.

The input buffer thread (IBT) is responsiblefor
checkingthe incomingsocket from the messagerouter.
This threadaddsany packetscomingfrom the message
router to the input buffer queue. Similarly, the out-
put buffer thread (OBT) continuouslycheckstheoutput
buffer queueandsendsany packet in this queueto the
messagerouter.

Thepacketsarriving at theSSfrom AIS, MICS, or
RISarereceivedby theinputbuffer queue.Themanager
thread (MT) is responsiblefor handlingthepacketsfrom
thedifferentsourcesin anappropriatemanner.

The scheduler thread (ST) is responsible for
schedulingthejobsthatarearriving from theclientsonto
the target machines. The ST usesa dynamicschedul-
ing algorithmfor schedulingthe jobs. The operationof
theST dependson the typeof the schedulingalgorithm
[MaA99]. A detailedexplanationof ST is givenbelow.
Theclient handler thread (CHT) authenticatestheclient
andkeepslisteningto theparticularclient it is connected
for requests.

The interaction of the different threadsand data
structuresareshown in Figure2. The directionof data
flow betweentwo datastructuresis representedby anar-
row. Thethreadwhich transfersthedatais notedbeside
thearrow joining thedatastructures.

Input Buffer
Queue

Output Buffer
Queue

Machine
Job QueueQueue

Job Arrival

Resource Info. Cache

Message Pending Array

Application Info. Cache

MT

MT

CHT

From AIS, MICS, or RIS

From Client To AIS, MICS, or RIS

IBT

ST

ST

OBT

Figure 2: Dataflow betweendifferentdatastruc-
turesin theschedulingserver.

Becausethe applicationtasksare arriving in real
time and the set of machinesthat constitutethe NC
system can changein real time a dynamic schedul-

ing methodis usedfor implementingthe ST. The dy-
namic schedulingmethodchosento implementthe ST
shouldbe capableof exploiting the heterogeneityavail-
ableamongthedifferentmachinesof theNCsystem.Ex-
istingdynamicschedulingalgorithmscanbecategorized
into two classes:on-linemodeschedulingalgorithmand
batchmodeschedulingalgorithm[MaA99].

In theon-linemode,a taskis scheduledontoa ma-
chine as soon as it arrives at the scheduler. In batch
mode, tasksare not scheduledonto a machineas they
arrive; insteadthey arecollectedinto a setthat is exam-
inedfor schedulingatpredefinedtimescalledscheduling
events. The independentsetof tasksthat is considered
for schedulingat a schedulingevent is called a meta-
task. A meta-taskcan include the newly arrived tasks
(i.e., the onesarriving after the last schedulingevent)
and the tasksthat were scheduledat previous schedul-
ing eventsthat areyet to begin their execution. While
theon-linemodealgorithmsconsidera taskfor schedul-
ing only once,batchmodealgorithmsconsidera taskfor
schedulingat eachschedulingeventuntil thetaskbegins
its execution.

For certain arrival and completionrates, the ma-
chinesmaybereadyto executeataskassoonasit arrives
at thescheduler[MaA99]. For suchsituations,it maybe
beneficialto usetheschedulerin theon-linemodesothat
ataskneednotwait until thenext schedulingeventto be-
gin itsexecution.If therearesufficientnumberof tasksto
keepthemachinesbusyin betweentheschedulingevents
andwhile theschedulingis computed,thenbatch-mode
schedulingwill bemoreappropriate.A detaileddiscus-
sion of the trade-offs betweenthe two modesaregiven
in [MaA99].

Figure3 shows the pseudo-codefor the ST whena
batchmodeschedulingalgorithm is used. The ST has
an infinite loop with two phases:schedulingandsleep-
ing. In theschedulingphase,theST collectsall thejobs
in the job arrival queueandthe jobs in the machinejob
queuesthatareyet to begin theirexecutioninto a tempo-
rary queue.For all machinesotherthanthosebusyexe-
cuting a task,the machineavailabletimesaresetequal
to thecurrenttime. For thosemachineswheretasksare
currentlyexecuting,the machineavailabletimesareset
to the expectedcompletiontimesof the tasksexecuting
on themachines.TheSTalsoobtainstheresourceusage
informationof theapplicationsandthemachinestatusin-
formationfrom theAIS andRIS, respectively. Oncethe
information from the AIS andRIS is received, a batch
modealgorithmis to computethe task-machineassign-
ments. The tasksare theninsertedinto the appropriate
machinejob queues.After theschedulingphaseis com-

pleted, the ST sleepsfor a predefinedtime period and
reenterstheschedulingphase.

Figure 4 shows the pseudo-codefor the ST when
an on-line modeschedulingalgorithmis used. The ST
checksthe job arrival queuefor any incoming job. If
the numberof jobs in the job arrival queueis zero, the
ST will wait on a semaphoreattachedwith the job ar-
rival queue.Otherwise,theSTwill extractthefirst job in
thequeueandscheduleit. TheST will requestthe job’s
resourceusageinformationandthemachinestatusinfor-
mation from the AIS and RIS, respectively. Oncethe
repliesfrom AIS andRIS arrive, an on-line scheduling
algorithmwill be usedto determinethe target machine
for thejob. Thejob will beinsertedinto themachinejob
queuethat correspondsto the targetmachine.Thenthe
STwill reexaminethejob arrival queuefor moreincom-
ing jobs.

while (true) �
// remove all jobs from the job arrival queue
// add these jobs to the temporary queue -- jobsQ
while (SchedulingServer.sizeofjobArrivalQ() � 0) �

aJob = SchedulingServer.removeJobArrivalQ();
jobsQ.add(aJob);�

// set the machine available time for each machine to the
// current time unless the machine has a job running on it.
// if there is a job running, then set the machine available
// time to the expected finishing time of the job

// remove all jobs not yet stated on the machine job queue
// add these jobs to the temporary queue
// at this point, JobsQ contains all jobs to be scheduled

// get the current machine load information in the scheduling
// Server’s theMachineLoadinfo member

// retrieve the ETC array for this application

// use a batch mode scheduling algorithm to schedule
// the jobs in the JobsQ
// Minmin is used in this case
// once the target machines are determined,
// insert the jobs in the appropriate queues in the
// machine job queue

// sleep for a while before scheduling again�

Figure 3: Pseudo-codeof the schedulerthread
for batchscheduling.

Theabovediscussionontheon-linemodeandbatch
modealgorithmsassumedthat the machinescontained
within theNC systemareoperatingin a dedicatedfash-
ion. If theenvironmentis non-dedicated,asit is in most
practicalsettingsthefollowing heuristicscanbeusedin
computingtheexpectedcompletiontimesof theapplica-
tion taskon thedifferentmachines.

The application resourceusage information ob-

while(true) �
// check the job arrival queue
// if there is no jobs wait on a semaphore
// once a job arrives the thread wakes up

// after waking up, remove a job from the job arrival queue
currJob = server.removeJobQueue();
// schedule this job -- using MCT algorithm

// get the application resource requirements from the
// application information cache or the AIS
// get the current machine status

// use the MCT algorithm to find the machine that
// gives the earliest completion time for this application
// the algorithm is scheduled on that machine

// insert the job in the appropriate queue in the
// machine job queue�

Figure 4: Pseudo-codeof the schedulerthread
for on-linescheduling.

tainedfromtheAIS providestheexpectedexecutiontime
of the taskwhen the machineis fully dedicatedto this
task, i.e., if this task is not runningthe machinewould
be100%idle for thedurationof theexecution.Fromthe
currentmachinestatus,the loadingon thedifferentma-
chinescanbedetermined.TheMICS executestheappli-
cationon thetargetmachinesat a lowerpriority thanthe
priority of normaltaskssothat theNC systemwould be
aslessintrusiveaspossible.Therefore,if a taskis sched-
uledontoamachinethatis only 50%idle, thenthetask’s
ETC shouldbe multiplied by a factorof two. If the SS
doesnot have a job runningon a machineandits load-
ing is suchthat the idle time is lessthan10%, thenthe
machineis consideredto bebusyexecutingjobs thatdo
notbelongtheSS,i.e.,themachineis executingjobsthat
arenotsubmittedvia theNC system.Suchmachinesare
ignoredby theSSfor thatparticularschedulingevent.

Let CompletionTime (i, j) betheexpected
completiontime of task � on machine� . Figure5 shows
theheuristicusedto computethe completiontimesof a
job on thedifferentmachines.

4. Interconnecting RMSs
In Figure6, two RMSsare interconnectedusinga

specialclient calledtheleasingclient. Theleasingclient
LCa connectsRMS A to RMS B. Its connectionto RMS
A is similar to thatof a client with few differences.The
LCa’s connectionto RMS B is similar to thatof a MICS
server with somedifferences. The LCa polls the SS
server of RMS A for theaveragemachineload informa-
tion. If theaveragemachineloadingreturnedby LCa is
below a giventhreshold,thenLCa will betreatedby the

for each machine j
if (a scheduled job is running on machine j)

CompletionTime(i, j) = Available time of j + ETC(i, j)
else if (idle Time of machine j � 10%)

CompletionTime (i,j) = CurrentTime + ETC(i,j)
* (Idle Time of machine)

else
ignore machine j

endif
endfor

Figure 5: Computingthe completiontime of a
task � .

SSserver of RMS B asa specialMICS server. Unlike a
MICS of RMS B, thejob presentedto LCa by RMS B is
not controlledby theSSserver of RMS B. Themachine

ClientClientClientClient
Leasing
Client
(LCb)

Message
Router

MICS MICS MICS

RIS AIS
SS

...
RMS B

Message
Router

MICS MICS MICS

RIS AIS
SS

...
RMS A

Leasing
Client
(LCa)ClientClientClientClient

Figure 6: Networking the RMSsusing the leas-
ing client.

assignmentof the job presentedto LCa is controlledby
theSSserverof RMS A. Oncetheexecutionof thejob is
completedin a MICS that belongsto RMS A the result
arereturnedto theclient thatis connectedto RMS B.

The above techniqueprovidesa flexible way of in-
terconnectingRMSs. The RMSscanbe interconnected

in an arbitrary topology. Several alternative strategies
couldbeusedfor returningtheloadinginformationfrom
RMS A to RMS B. Insteadof returningonly theaverage
machineload informationit is possibleto return(a) the
averagemachineload and the varianceof the machine
load,or (b) maximum,average,minimummachineload.
Using thesevalues,the SSserver of RMS B shoulduse
someheuristicsto determinewhetherit is beneficialto
senda job over to RMS A.

5. Conclusions and Future Work
This paperdescribesissuesinvolved in designing

and implementing an RMS using Java for NC sys-
temsthatcontainheterogeneousmachinesfrom different
administrative domainsconnectedvia high-speednet-
works. Several issuesincluding portability, scalability,
heterogeneoussubstrate,andvariability of theexecution
timeestimatesaresomeissuesaddressedin this study.

Following aresomedirectionsidentified for future
work. Supportingdifferentiatedservicesfor the appli-
cation tasksby taking into considerationthe quality of
servicerequirementsis an importantissuethat needsto
bestudiedin the future [Mah99]. In orderto ensuread-
equateservice,usersmay requestin advancethat time
shouldbeallocatedfor theirapplications.Presentimple-
mentationof theRMSdoesnotsupportadvancereserva-
tions.Providing supportfor advancereservationswill be
examinedin a futurestudy.

References

[MaA99] M. Maheswaran,S.Ali, H. J.Siegel,D. Hens-
gen, and R. F. Freund,“Dynamic matching
and schedulingof meta-taskson heteroge-
neouscomputingsystems,” Journal of Paral-
lel and Distributed Computing, acceptedand
scheduledto appearin 1999.

[Mah99] M. Maheswaran, “Quality of servicedriven
resourcemanagementalgorithmsfor network
computing,” 1999 International Conference
on Parallel and Distributed Processing Tech-
nologies and Applications (PDPTA ’99), June
1999,pp.1090–1096.

[SiA96] H. J.Siegel,J.K. Antonio,R. C. Metzger, M.
Tan, and Y. A. Li, “Heterogeneouscomput-
ing,” in Parallel and Distributed Computing
Handbook, A. Y. Zomaya,ed.,McGraw-Hill,
New York, NY, 1996,pp.725–761.

